Visible to the public Biblio

Filters: Author is Fuhry, Benny  [Clear All Filters]
2022-07-29
Fuhry, Benny, Jayanth Jain, H A, Kerschbaum, Florian.  2021.  EncDBDB: Searchable Encrypted, Fast, Compressed, In-Memory Database Using Enclaves. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :438—450.
Data confidentiality is an important requirement for clients when outsourcing databases to the cloud. Trusted execution environments, such as Intel SGX, offer an efficient solution to this confidentiality problem. However, existing TEE-based solutions are not optimized for column-oriented, in-memory databases and pose impractical memory requirements on the enclave. We present EncDBDB, a novel approach for client-controlled encryption of a column-oriented, in-memory databases allowing range searches using an enclave. EncDBDB offers nine encrypted dictionaries, which provide different security, performance, and storage efficiency tradeoffs for the data. It is especially suited for complex, read-oriented, analytic queries as present, e.g., in data warehouses. The computational overhead compared to plaintext processing is within a millisecond even for databases with millions of entries and the leakage is limited. Compressed encrypted data requires less space than a corresponding plaintext column. Furthermore, EncDBDB's enclave is very small reducing the potential for security-relevant implementation errors and side-channel leakages.
2017-03-20
Fuhry, Benny, Tighzert, Walter, Kerschbaum, Florian.  2016.  Encrypting Analytical Web Applications. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :35–46.

The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients' data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing solutions for encrypting data in web applications poorly support such encryption. We employ a proxy that adjusts the encryption to the level necessary for the client's usage and also supports additively homomorphic encryption. This proxy is deployed at the client and all encryption keys are stored and managed there, while the application is running in the cloud. Our proxy is stateless and we only need to modify the database driver of the application. We evaluate an instantiation of our architecture on an exemplary application. We only slightly increase page load time on average from 3.1 seconds to 4.7. However, roughly 40% of all data columns remain probabilistic encrypted. The client can set the desired security level for each column using our policy mechanism. Hence our proxy architecture offers a solution to increase the confidentiality of the data at the cloud provider at a moderate performance penalty.