Visible to the public Biblio

Filters: Author is Shakarian, Paulo  [Clear All Filters]
2020-07-06
Paliath, Vivin, Shakarian, Paulo.  2019.  Reasoning about Sequential Cyberattacks. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :855–862.
Cyber adversaries employ a variety of malware and exploits to attack computer systems, usually via sequential or “chained” attacks, that take advantage of vulnerability dependencies. In this paper, we introduce a formalism to model such attacks. We show that the determination of the set of capabilities gained by an attacker, which also translates to extent to which the system is compromised, corresponds with the convergence of a simple fixed-point operator. We then address the problem of determining the optimal/most-dangerous strategy for a cyber-adversary with respect to this model and find it to be an NP-Complete problem. To address this complexity we utilize an A*-based approach with an admissible heuristic, that incorporates the result of the fixed-point operator and uses memoization for greater efficiency. We provide an implementation and show through a suite of experiments, using both simulated and actual vulnerability data, that this method performs well in practice for identifying adversarial courses of action in this domain. On average, we found that our techniques decrease runtime by 82%.
2018-09-12
Kwon, K. Hazel, Priniski, J. Hunter, Sarkar, Soumajyoti, Shakarian, Jana, Shakarian, Paulo.  2017.  Crisis and Collective Problem Solving in Dark Web: An Exploration of a Black Hat Forum. Proceedings of the 8th International Conference on Social Media & Society. :45:1–45:5.

This paper explores the process of collective crisis problem-solving in the darkweb. We conducted a preliminary study on one of the Tor-based darkweb forums, during the shutdown of two marketplaces. Content analysis suggests that distrust permeated the forum during the marketplace shutdowns. We analyzed the debates concerned with suspicious claims and conspiracies. The results suggest that a black-market crisis potentially offers an opportunity for cyber-intelligence to disrupt the darkweb by engendering internal conflicts. At the same time, the study also shows that darkweb members were adept at reaching collective solutions by sharing new market information, more secure technologies, and alternative routes for economic activities.

2017-03-20
Nunes, Eric, Shakarian, Paulo, Simari, Gerardo I., Ruef, Andrew.  2016.  Argumentation models for cyber attribution. :837–844.

A major challenge in cyber-threat analysis is combining information from different sources to find the person or the group responsible for the cyber-attack. It is one of the most important technical and policy challenges in cybersecurity. The lack of ground truth for an individual responsible for an attack has limited previous studies. In this paper, we take a first step towards overcoming this limitation by building a dataset from the capture-the-flag event held at DEFCON, and propose an argumentation model based on a formal reasoning framework called DeLP (Defeasible Logic Programming) designed to aid an analyst in attributing a cyber-attack. We build models from latent variables to reduce the search space of culprits (attackers), and show that this reduction significantly improves the performance of classification-based approaches from 37% to 62% in identifying the attacker.

Nunes, Eric, Shakarian, Paulo, Simari, Gerardo I., Ruef, Andrew.  2016.  Argumentation models for cyber attribution. :837–844.

A major challenge in cyber-threat analysis is combining information from different sources to find the person or the group responsible for the cyber-attack. It is one of the most important technical and policy challenges in cybersecurity. The lack of ground truth for an individual responsible for an attack has limited previous studies. In this paper, we take a first step towards overcoming this limitation by building a dataset from the capture-the-flag event held at DEFCON, and propose an argumentation model based on a formal reasoning framework called DeLP (Defeasible Logic Programming) designed to aid an analyst in attributing a cyber-attack. We build models from latent variables to reduce the search space of culprits (attackers), and show that this reduction significantly improves the performance of classification-based approaches from 37% to 62% in identifying the attacker.