Visible to the public Biblio

Filters: Author is Naor, Moni  [Clear All Filters]
2020-07-20
Komargodski, Ilan, Naor, Moni, Yogev, Eylon.  2017.  White-Box vs. Black-Box Complexity of Search Problems: Ramsey and Graph Property Testing. 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). :622–632.
Ramsey theory assures us that in any graph there is a clique or independent set of a certain size, roughly logarithmic in the graph size. But how difficult is it to find the clique or independent set? If the graph is given explicitly, then it is possible to do so while examining a linear number of edges. If the graph is given by a black-box, where to figure out whether a certain edge exists the box should be queried, then a large number of queries must be issued. But what if one is given a program or circuit for computing the existence of an edge? This problem was raised by Buss and Goldberg and Papadimitriou in the context of TFNP, search problems with a guaranteed solution. We examine the relationship between black-box complexity and white-box complexity for search problems with guaranteed solution such as the above Ramsey problem. We show that under the assumption that collision resistant hash function exist (which follows from the hardness of problems such as factoring, discrete-log and learning with errors) the white-box Ramsey problem is hard and this is true even if one is looking for a much smaller clique or independent set than the theorem guarantees. In general, one cannot hope to translate all black-box hardness for TFNP into white-box hardness: we show this by adapting results concerning the random oracle methodology and the impossibility of instantiating it. Another model we consider is the succinct black-box, where there is a known upper bound on the size of the black-box (but no limit on the computation time). In this case we show that for all TFNP problems there is an upper bound on the number of queries proportional to the description size of the box times the solution size. On the other hand, for promise problems this is not the case. Finally, we consider the complexity of graph property testing in the white-box model. We show a property which is hard to test even when one is given the program for computing the graph. The hard property is whether the graph is a two-source extractor.
2017-03-20
Asharov, Gilad, Naor, Moni, Segev, Gil, Shahaf, Ido.  2016.  Searchable Symmetric Encryption: Optimal Locality in Linear Space via Two-dimensional Balanced Allocations. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :1101–1114.

Searchable symmetric encryption (SSE) enables a client to store a database on an untrusted server while supporting keyword search in a secure manner. Despite the rapidly increasing interest in SSE technology, experiments indicate that the performance of the known schemes scales badly to large databases. Somewhat surprisingly, this is not due to their usage of cryptographic tools, but rather due to their poor locality (where locality is defined as the number of non-contiguous memory locations the server accesses with each query). The only known schemes that do not suffer from poor locality suffer either from an impractical space overhead or from an impractical read efficiency (where read efficiency is defined as the ratio between the number of bits the server reads with each query and the actual size of the answer). We construct the first SSE schemes that simultaneously enjoy optimal locality, optimal space overhead, and nearly-optimal read efficiency. Specifically, for a database of size N, under the modest assumption that no keyword appears in more than N1 − 1/loglogN documents, we construct a scheme with read efficiency Õ(loglogN). This essentially matches the lower bound of Cash and Tessaro (EUROCRYPT ’14) showing that any SSE scheme must be sub-optimal in either its locality, its space overhead, or its read efficiency. In addition, even without making any assumptions on the structure of the database, we construct a scheme with read efficiency Õ(logN). Our schemes are obtained via a two-dimensional generalization of the classic balanced allocations (“balls and bins”) problem that we put forward. We construct nearly-optimal two-dimensional balanced allocation schemes, and then combine their algorithmic structure with subtle cryptographic techniques.

Asharov, Gilad, Naor, Moni, Segev, Gil, Shahaf, Ido.  2016.  Searchable Symmetric Encryption: Optimal Locality in Linear Space via Two-dimensional Balanced Allocations. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :1101–1114.

Searchable symmetric encryption (SSE) enables a client to store a database on an untrusted server while supporting keyword search in a secure manner. Despite the rapidly increasing interest in SSE technology, experiments indicate that the performance of the known schemes scales badly to large databases. Somewhat surprisingly, this is not due to their usage of cryptographic tools, but rather due to their poor locality (where locality is defined as the number of non-contiguous memory locations the server accesses with each query). The only known schemes that do not suffer from poor locality suffer either from an impractical space overhead or from an impractical read efficiency (where read efficiency is defined as the ratio between the number of bits the server reads with each query and the actual size of the answer). We construct the first SSE schemes that simultaneously enjoy optimal locality, optimal space overhead, and nearly-optimal read efficiency. Specifically, for a database of size N, under the modest assumption that no keyword appears in more than N1 − 1/loglogN documents, we construct a scheme with read efficiency Õ(loglogN). This essentially matches the lower bound of Cash and Tessaro (EUROCRYPT ’14) showing that any SSE scheme must be sub-optimal in either its locality, its space overhead, or its read efficiency. In addition, even without making any assumptions on the structure of the database, we construct a scheme with read efficiency Õ(logN). Our schemes are obtained via a two-dimensional generalization of the classic balanced allocations (“balls and bins”) problem that we put forward. We construct nearly-optimal two-dimensional balanced allocation schemes, and then combine their algorithmic structure with subtle cryptographic techniques.