Visible to the public Biblio

Filters: Author is Beverly, Robert  [Clear All Filters]
2020-01-21
Luckie, Matthew, Beverly, Robert, Koga, Ryan, Keys, Ken, Kroll, Joshua A., claffy, k.  2019.  Network Hygiene, Incentives, and Regulation: Deployment of Source Address Validation in the Internet. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. :465–480.
The Spoofer project has collected data on the deployment and characteristics of IP source address validation on the Internet since 2005. Data from the project comes from participants who install an active probing client that runs in the background. The client automatically runs tests both periodically and when it detects a new network attachment point. We analyze the rich dataset of Spoofer tests in multiple dimensions: across time, networks, autonomous systems, countries, and by Internet protocol version. In our data for the year ending August 2019, at least a quarter of tested ASes did not filter packets with spoofed source addresses leaving their networks. We show that routers performing Network Address Translation do not always filter spoofed packets, as 6.4% of IPv4/24 tested in the year ending August 2019 did not filter. Worse, at least two thirds of tested ASes did not filter packets entering their networks with source addresses claiming to be from within their network that arrived from outside their network. We explore several approaches to encouraging remediation and the challenges of evaluating their impact. While we have been able to remediate 352 IPv4/24, we have found an order of magnitude more IPv4/24 that remains unremediated, despite myriad remediation strategies, with 21% unremediated for more than six months. Our analysis provides the most complete and confident picture of the Internet's susceptibility to date of this long-standing vulnerability. Although there is no simple solution to address the remaining long-tail of unremediated networks, we conclude with a discussion of possible non-technical interventions, and demonstrate how the platform can support evaluation of the impact of such interventions over time.
2017-03-29
Martin, Jeremy, Rye, Erik, Beverly, Robert.  2016.  Decomposition of MAC Address Structure for Granular Device Inference. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :78–88.

Common among the wide variety of ubiquitous networked devices in modern use is wireless 802.11 connectivity. The MAC addresses of these devices are visible to a passive adversary, thereby presenting security and privacy threats - even when link or application-layer encryption is employed. While it is well-known that the most significant three bytes of a MAC address, the OUI, coarsely identify a device's manufacturer, we seek to better understand the ways in which the remaining low-order bytes are allocated in practice. From a collection of more than two billion 802.11 frames observed in the wild, we extract device and model information details for over 285K devices, as leaked by various management frames and discovery protocols. From this rich dataset, we characterize overall device populations and densities, vendor address allocation policies and utilization, OUI sharing among manufacturers, discover unique models occurring in multiple OUIs, and map contiguous address blocks to specific devices. Our mapping thus permits fine-grained device type and model predictions for unknown devices solely on the basis of their MAC address. We validate our inferences on both ground-truth data and a third-party dataset, where we obtain high accuracy. Our results empirically demonstrate the extant structure of the low-order MAC bytes due to manufacturer's sequential allocation policies, and the security and privacy concerns therein.