Biblio
As an efficient deletion method, unlinking is widely used in cloud storage. While unlinking is a kind of incomplete deletion, `deleted data' remains on cloud and can be recovered. To make `deleted data' unrecoverable, overwriting is an effective method on cloud. Users lose control over their data on cloud once deleted, so it is difficult for them to confirm overwriting. In face of such a crucial problem, we propose a Provable and Traceable Assured Deletion (PTAD) scheme in cloud storage based on blockchain. PTAD scheme relies on overwriting to achieve assured deletion. We reference the idea of data integrity checking and design algorithms to verify if cloud overwrites original blocks properly as specific patterns. We utilize technique of smart contract in blockchain to automatically execute verification and keep transaction in ledger for tracking. The whole scheme can be divided into three stages-unlinking, overwriting and verification-and we design one specific algorithm for each stage. For evaluation, we implement PTAD scheme on cloud and construct a consortium chain with Hyperledger Fabric. The performance shows that PTAD scheme is effective and feasible.
In ciphertext policy attribute-based encryption scheme, access policies are associated with ciphertext and tied to it. It is necessary to hide the access policy in the most sensitive spots such as political, medical and economic fields, that is, receiver's anonymity. In this paper, we propose an efficient CP-ABE construction with hidden policy and prove it to be fully secure under static assumptions applying the dual system encryption methodology. Access structures in our construction are AND gates on positive, negative and wildcard attributes and the ciphertext size is short, which is only concerned with the number of wildcards.