Biblio
Modern automotive Cyber-Physical Systems (CPS) are increasingly adopting wireless communications for Intra-Vehicular, Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) protocols as a promising solution for challenges such as the wire harnessing problem, collision detection, and collision avoidance, traffic control, and environmental hazards. Regrettably, this new trend results in new security challenges that can put the safety and privacy of the automotive CPS and passengers at great risk. In addition, automotive wireless communication security is constrained by strict energy and performance limitations of electronic controller units and sensors. As a result, the key generation and management for secure automotive CPS wireless communication is an open research challenge. This article aims to help solve these security challenges by presenting a practical key generation technique based on the reciprocity and high spatial and temporal variation properties of the automotive wireless communication channel. Accompanying this technique is also a key length optimization algorithm to improve performance (in terms of time and energy) for safety-related applications constrained by small communication windows. To validate the practicality and effectiveness of our approach, we have conducted simulations alongside real-world experiments with vehicles and RC cars. Last, we demonstrate through simulations that we can generate keys with high security strength (keys with 67% min-entropy) with 20× reduction in code size overhead in comparison to the state-of-the-art security techniques.
Additive Manufacturing (AM) uses Cyber-Physical Systems (CPS) (e.g., 3D Printers) that are vulnerable to kinetic cyber-attacks. Kinetic cyber-attacks cause physical damage to the system from the cyber domain. In AM, kinetic cyber-attacks are realized by introducing flaws in the design of the 3D objects. These flaws may eventually compromise the structural integrity of the printed objects. In CPS, researchers have designed various attack detection method to detect the attacks on the integrity of the system. However, in AM, attack detection method is in its infancy. Moreover, analog emissions (such as acoustics, electromagnetic emissions, etc.) from the side-channels of AM have not been fully considered as a parameter for attack detection. To aid the security research in AM, this paper presents a novel attack detection method that is able to detect zero-day kinetic cyber-attacks on AM by identifying anomalous analog emissions which arise as an outcome of the attack. This is achieved by statistically estimating functions that map the relation between the analog emissions and the corresponding cyber domain data (such as G-code) to model the behavior of the system. Our method has been tested to detect potential zero-day kinetic cyber-attacks in fused deposition modeling based AM. These attacks can physically manifest to change various parameters of the 3D object, such as speed, dimension, and movement axis. Accuracy, defined as the capability of our method to detect the range of variations introduced to these parameters as a result of kinetic cyber-attacks, is 77.45%.