Visible to the public Biblio

Filters: Author is Shin, Seungwon  [Clear All Filters]
2019-06-28
Park, Taejune, Xu, Zhaoyan, Shin, Seungwon.  2018.  HEX Switch: Hardware-Assisted Security Extensions of OpenFlow. Proceedings of the 2018 Workshop on Security in Softwarized Networks: Prospects and Challenges. :33-39.

Software-defined networking (SDN) and Network Function Virtualization (NFV) have inspired security researchers to devise new security applications for these new network technology. However, since SDN and NFV are basically faithful to operating a network, they only focus on providing features related to network control. Therefore, it is challenging to implement complex security functions such as packet payload inspection. Several studies have addressed this challenge through an SDN data plane extension, but there were problems with performance and control interfaces. In this paper, we introduce a new data plane architecture, HEX which leverages existing data plane architectures for SDN to enable network security applications in an SDN environment efficiently and effectively. HEX provides security services as a set of OpenFlow actions ensuring high performance and a function of handling multiple SDN actions with a simple control command. We implemented a DoS detector and Deep Packet Inspection (DPI) as the prototype features of HEX using the NetFPGA-1G-CML, and our evaluation results demonstrate that HEX can provide security services as a line-rate performance.

2017-06-05
Pan, Xiang, Yegneswaran, Vinod, Chen, Yan, Porras, Phillip, Shin, Seungwon.  2016.  HogMap: Using SDNs to Incentivize Collaborative Security Monitoring. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :7–12.

Cyber Threat Intelligence (CTI) sharing facilitates a comprehensive understanding of adversary activity and enables enterprise networks to prioritize their cyber defense technologies. To that end, we introduce HogMap, a novel software-defined infrastructure that simplifies and incentivizes collaborative measurement and monitoring of cyber-threat activity. HogMap proposes to transform the cyber-threat monitoring landscape by integrating several novel SDN-enabled capabilities: (i) intelligent in-place filtering of malicious traffic, (ii) dynamic migration of interesting and extraordinary traffic and (iii) a software-defined marketplace where various parties can opportunistically subscribe to and publish cyber-threat intelligence services in a flexible manner. We present the architectural vision and summarize our preliminary experience in developing and operating an SDN-based HoneyGrid, which spans three enterprises and implements several of the enabling capabilities (e.g., traffic filtering, traffic forwarding and connection migration). We find that SDN technologies greatly simplify the design and deployment of such globally distributed and elastic HoneyGrids.

2017-04-03
Lee, Seungsoo, Yoon, Changhoon, Shin, Seungwon.  2016.  The Smaller, the Shrewder: A Simple Malicious Application Can Kill an Entire SDN Environment. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :23–28.

Security vulnerability assessment is an important process that must be conducted against any system before the deployment, and emerging technologies are no exceptions. Software-Defined Networking (SDN) has aggressively evolved in the past few years and is now almost at the early adoption stage. At this stage, the attack surface of SDN should be thoroughly investigated and assessed in order to mitigate possible security breaches against SDN. Inspired by the necessity, we reveal three attack scenarios that leverage SDN application to attack SDNs, and test the attack scenarios against three of the most popular SDN controllers available today. In addition, we discuss the possible defense mechanisms against such application-originated attacks.