Visible to the public Biblio

Filters: Author is Shook, James M.  [Clear All Filters]
2017-04-20
Mell, Peter, Shook, James M., Gavrila, Serban.  2016.  Restricting Insider Access Through Efficient Implementation of Multi-Policy Access Control Systems. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :13–22.

The American National Standards Institute (ANSI) has standardized an access control approach, Next Generation Access Control (NGAC), that enables simultaneous instantiation of multiple access control policies. For large complex enterprises this is critical to limiting the authorized access of insiders. However, the specifications describe the required access control capabilities but not the related algorithms. While appropriate, this leave open the important question as to whether or not NGAC is scalable. Existing cubic reference implementations indicate that it does not. For example, the primary NGAC reference implementation took several minutes to simply display the set of files accessible to a user on a moderately sized system. To solve this problem we provide an efficient access control decision algorithm, reducing the overall complexity from cubic to linear. Our other major contribution is to provide a novel mechanism for administrators and users to review allowed access rights. We provide an interface that appears to be a simple file directory hierarchy but in reality is an automatically generated structure abstracted from the underlying access control graph that works with any set of simultaneously instantiated access control policies. Our work thus provides the first efficient implementation of NGAC while enabling user privilege review through a novel visualization approach. These capabilities help limit insider access to information (and thereby limit information leakage) by enabling the efficient simultaneous instantiation of multiple access control policies.