Visible to the public Biblio

Filters: Author is Liao, Weixian  [Clear All Filters]
2023-05-19
Hussaini, Adamu, Qian, Cheng, Liao, Weixian, Yu, Wei.  2022.  A Taxonomy of Security and Defense Mechanisms in Digital Twins-based Cyber-Physical Systems. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :597—604.
The (IoT) paradigm’s fundamental goal is to massively connect the “smart things” through standardized interfaces, providing a variety of smart services. Cyber-Physical Systems (CPS) include both physical and cyber components and can apply to various application domains (smart grid, smart transportation, smart manufacturing, etc.). The Digital Twin (DT) is a cyber clone of physical objects (things), which will be an essential component in CPS. This paper designs a systematic taxonomy to explore different attacks on DT-based CPS and how they affect the system from a four-layer architecture perspective. We present an attack space for DT-based CPS on four layers (i.e., object layer, communication layer, DT layer, and application layer), three attack objects (i.e., confidentiality, integrity, and availability), and attack types combined with strength and knowledge. Furthermore, some selected case studies are conducted to examine attacks on representative DT-based CPS (smart grid, smart transportation, and smart manufacturing). Finally, we propose a defense mechanism called Secured DT Development Life Cycle (SDTDLC) and point out the importance of leveraging other enabling techniques (intrusion detection, blockchain, modeling, simulation, and emulation) to secure DT-based CPS.
2023-04-14
Kimbrough, Turhan, Tian, Pu, Liao, Weixian, Blasch, Erik, Yu, Wei.  2022.  Deep CAPTCHA Recognition Using Encapsulated Preprocessing and Heterogeneous Datasets. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an important security technique designed to deter bots from abusing software systems, which has broader applications in cyberspace. CAPTCHAs come in a variety of forms, including the deciphering of obfuscated text, transcribing of audio messages, and tracking mouse movement, among others. This paper focuses on using deep learning techniques to recognize text-based CAPTCHAs. In particular, our work focuses on generating training datasets using different CAPTCHA schemes, along with a pre-processing technique allowing for character-based recognition. We have encapsulated the CRABI (CAPTCHA Recognition with Attached Binary Images) framework to give an image multiple labels for improvement in feature extraction. Using real-world datasets, performance evaluations are conducted to validate the efficacy of our proposed approach on several neural network architectures (e.g., custom CNN architecture, VGG16, ResNet50, and MobileNet). The experimental results confirm that over 90% accuracy can be achieved on most models.
2022-11-18
Tian, Pu, Hatcher, William Grant, Liao, Weixian, Yu, Wei, Blasch, Erik.  2021.  FALIoTSE: Towards Federated Adversarial Learning for IoT Search Engine Resiliency. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :290–297.
To improve efficiency and resource usage in data retrieval, an Internet of Things (IoT) search engine organizes a vast amount of scattered data and responds to client queries with processed results. Machine learning provides a deep understanding of complex patterns and enables enhanced feedback to users through well-trained models. Nonetheless, machine learning models are prone to adversarial attacks via the injection of elaborate perturbations, resulting in subverted outputs. Particularly, adversarial attacks on time-series data demand urgent attention, as sensors in IoT systems are collecting an increasing volume of sequential data. This paper investigates adversarial attacks on time-series analysis in an IoT search engine (IoTSE) system. Specifically, we consider the Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) as our base model, implemented in a simulated federated learning scheme. We propose the Federated Adversarial Learning for IoT Search Engine (FALIoTSE) that exploits the shared parameters of the federated model as the target for adversarial example generation and resiliency. Using a real-world smart parking garage dataset, the impact of an attack on FALIoTSE is demonstrated under various levels of perturbation. The experiments show that the training error increases significantly with noises from the gradient.
2017-04-24
Salinas, Sergio, Luo, Changqing, Liao, Weixian, Li, Pan.  2016.  Efficient Secure Outsourcing of Large-scale Quadratic Programs. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :281–292.

The massive amount of data that is being collected by today's society has the potential to advance scientific knowledge and boost innovations. However, people often lack sufficient computing resources to analyze their large-scale data in a cost-effective and timely way. Cloud computing offers access to vast computing resources on an on-demand and pay-per-use basis, which is a practical way for people to analyze their huge data sets. However, since their data contain sensitive information that needs to be kept secret for ethical, security, or legal reasons, many people are reluctant to adopt cloud computing. For the first time in the literature, we propose a secure outsourcing algorithm for large-scale quadratic programs (QPs), which is one of the most fundamental problems in data analysis. Specifically, based on simple linear algebra operations, we design a low-complexity QP transformation that protects the private data in a QP. We show that the transformed QP is computationally indistinguishable under a chosen plaintext attack (CPA), i.e., CPA-secure. We then develop a parallel algorithm to solve the transformed QP at the cloud, and efficiently find the solution to the original QP at the user. We implement the proposed algorithm on the Amazon Elastic Compute Cloud (EC2) and a laptop. We find that our proposed algorithm offers significant time savings for the user and is scalable to the size of the QP.