Biblio
Additive manufacturing, also known as 3D printing, has been increasingly applied to fabricate highly intellectual property (IP) sensitive products. However, the related IP protection issues in 3D printers are still largely underexplored. On the other hand, smartphones are equipped with rich onboard sensors and have been applied to pervasive mobile surveillance in many applications. These facts raise one critical question: is it possible that smartphones access the side-channel signals of 3D printer and then hack the IP information? To answer this, we perform an end-to-end study on exploring smartphone-based side-channel attacks against 3D printers. Specifically, we formulate the problem of the IP side-channel attack in 3D printing. Then, we investigate the possible acoustic and magnetic side-channel attacks using the smartphone built-in sensors. Moreover, we explore a magnetic-enhanced side-channel attack model to accurately deduce the vital directional operations of 3D printer. Experimental results show that by exploiting the side-channel signals collected by smartphones, we can successfully reconstruct the physical prints and their G-code with Mean Tendency Error of 5.87% on regular designs and 9.67% on complex designs, respectively. Our study demonstrates this new and practical smartphone-based side channel attack on compromising IP information during 3D printing.
Abundant multimedia data generated in our daily life has intrigued a variety of very important and useful real-world applications such as object detection and recognition etc. Accompany with these applications, many popular feature descriptors have been developed, e.g., SIFT, SURF and HOG. Manipulating massive multimedia data locally, however, is a storage and computation intensive task, especially for resource-constrained clients. In this work, we focus on exploring how to securely outsource the famous feature extraction algorithm–Histogram of Oriented Gradients (HOG) to untrusted cloud servers, without revealing the data owner's private information. For the first time, we investigate this secure outsourcing computation problem under two different models and accordingly propose two novel privacy-preserving HOG outsourcing protocols, by efficiently encrypting image data by somewhat homomorphic encryption (SHE) integrated with single-instruction multiple-data (SIMD), designing a new batched secure comparison protocol, and carefully redesigning every step of HOG to adapt it to the ciphertext domain. Explicit Security and effectiveness analysis are presented to show that our protocols are practically-secure and can approximate well the performance of the original HOG executed in the plaintext domain. Our extensive experimental evaluations further demonstrate that our solutions achieve high efficiency and perform comparably to the original HOG when being applied to human detection.
In local differential privacy (LDP), each user perturbs her data locally before sending the noisy data to a data collector. The latter then analyzes the data to obtain useful statistics. Unlike the setting of centralized differential privacy, in LDP the data collector never gains access to the exact values of sensitive data, which protects not only the privacy of data contributors but also the collector itself against the risk of potential data leakage. Existing LDP solutions in the literature are mostly limited to the case that each user possesses a tuple of numeric or categorical values, and the data collector computes basic statistics such as counts or mean values. To the best of our knowledge, no existing work tackles more complex data mining tasks such as heavy hitter discovery over set-valued data. In this paper, we present a systematic study of heavy hitter mining under LDP. We first review existing solutions, extend them to the heavy hitter estimation, and explain why their effectiveness is limited. We then propose LDPMiner, a two-phase mechanism for obtaining accurate heavy hitters with LDP. The main idea is to first gather a candidate set of heavy hitters using a portion of the privacy budget, and focus the remaining budget on refining the candidate set in a second phase, which is much more efficient budget-wise than obtaining the heavy hitters directly from the whole dataset. We provide both in-depth theoretical analysis and extensive experiments to compare LDPMiner against adaptations of previous solutions. The results show that LDPMiner significantly improves over existing methods. More importantly, LDPMiner successfully identifies the majority true heavy hitters in practical settings.
Centralized spectrum management is one of the key dynamic spectrum access (DSA) mechanisms proposed to govern the spectrum sharing between government incumbent users (IUs) and commercial secondary users (SUs). In the current centralized DSA designs, the operation data of both government IUs and commercial SUs needs to be shared with a central server. However, the operation data of government IUs is often classified information and the SU operation data may also be commercial secret. The current system design dissatisfies the privacy requirement of both IUs and SUs since the central server is not necessarily trust-worthy for holding such sensitive operation data. To address the privacy issue, this paper presents a privacy-preserving centralized DSA system (P2-SAS), which realizes the complex spectrum allocation process of DSA through efficient secure multi-party computation. In P2-SAS, none of the IU or SU operation data would be exposed to any snooping party, including the central server itself. We formally prove the correctness and privacy-preserving property of P2-SAS and evaluate its scalability and practicality using experiments based on real-world data. Experiment results show that P2-SAS can respond an SU's spectrum request in 6.96 seconds with communication overhead of less than 4 MB.
The image and multimedia data produced by individuals and enterprises is increasing every day. Motivated by the advances in cloud computing, there is a growing need to outsource such computational intensive image feature detection tasks to cloud for its economic computing resources and on-demand ubiquitous access. However, the concerns over the effective protection of private image and multimedia data when outsourcing it to cloud platform become the major barrier that impedes the further implementation of cloud computing techniques over massive amount of image and multimedia data. To address this fundamental challenge, we study the state-of-the-art image feature detection algorithms and focus on Scalar Invariant Feature Transform (SIFT), which is one of the most important local feature detection algorithms and has been broadly employed in different areas, including object recognition, image matching, robotic mapping, and so on. We analyze and model the privacy requirements in outsourcing SIFT computation and propose Secure Scalar Invariant Feature Transform (SecSIFT), a high-performance privacy-preserving SIFT feature detection system. In contrast to previous works, the proposed design is not restricted by the efficiency limitations of current homomorphic encryption scheme. In our design, we decompose and distribute the computation procedures of the original SIFT algorithm to a set of independent, co-operative cloud servers and keep the outsourced computation procedures as simple as possible to avoid utilizing a computationally expensive homomorphic encryption scheme. The proposed SecSIFT enables implementation with practical computation and communication complexity. Extensive experimental results demonstrate that SecSIFT performs comparably to original SIFT on image benchmarks while capable of preserving the privacy in an efficient way.