Visible to the public Biblio

Filters: Author is Ravi, Vadlamani  [Clear All Filters]
2020-01-28
Krishna, Gutha Jaya, Ravi, Vadlamani.  2019.  Keystroke Based User Authentication Using Modified Differential Evolution. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :739–744.

User Authentication is a difficult problem yet to be addressed accurately. Little or no work is reported in literature dealing with clustering-based anomaly detection techniques for user authentication for keystroke data. Therefore, in this paper, Modified Differential Evolution (MDE) based subspace anomaly detection technique is proposed for user authentication in the context of behavioral biometrics using keystroke dynamics features. Thus, user authentication is posed as an anomaly detection problem. Anomalies in CMU's keystroke dynamics dataset are identified using subspace-based and distance-based techniques. It is observed that, among the proposed techniques, MDE based subspace anomaly detection technique yielded the highest Area Under ROC Curve (AUC) for user authentication problem. We also performed a Wilcoxon Signed Rank statistical test to corroborate our results statistically.

2017-04-24
Tayal, Kshitij, Ravi, Vadlamani.  2016.  Particle Swarm Optimization Trained Class Association Rule Mining: Application to Phishing Detection. Proceedings of the International Conference on Informatics and Analytics. :13:1–13:8.

Association and classification are two important tasks in data mining. Literature abounds with works that unify these two techniques. This paper presents a new algorithm called Particle Swarm Optimization trained Classification Association Rule Mining (PSOCARM) for associative classification that generates class association rules (CARs) from transactional database by formulating a combinatorial global optimization problem, without having to specify minimal support and confidence unlike other conventional associative classifiers. We devised a new rule pruning scheme in order to reduce the number of rules and increasing the generalization aspect of the classifier. We demonstrated its effectiveness for phishing email and phishing website detection. Our experimental results indicate the superiority of our proposed algorithm with respect to accuracy and the number of rules generated as compared to the state-of-the-art algorithms.