Visible to the public Biblio

Filters: Author is Coskun, Baris  [Clear All Filters]
2018-08-23
Halawa, Hassan, Ripeanu, Matei, Beznosov, Konstantin, Coskun, Baris, Liu, Meizhu.  2017.  An Early Warning System for Suspicious Accounts. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :51–52.
In the face of large-scale automated cyber-attacks to large online services, fast detection and remediation of compromised accounts are crucial to limit the spread of new attacks and to mitigate the overall damage to users, companies, and the public at large. We advocate a fully automated approach based on machine learning to enable large-scale online service providers to quickly identify potentially compromised accounts. We develop an early warning system for the detection of suspicious account activity with the goal of quick identification and remediation of compromised accounts. We demonstrate the feasibility and applicability of our proposed system in a four month experiment at a large-scale online service provider using real-world production data encompassing hundreds of millions of users. We show that - even using only login data, features with low computational cost, and a basic model selection approach - around one out of five accounts later flagged as suspicious are correctly predicted a month in advance based on one week's worth of their login activity.
2018-02-15
Han, Shuchu, Hu, Yifan, Skiena, Steven, Coskun, Baris, Liu, Meizhu, Qin, Hong, Perez, Jaime.  2017.  Generating Look-alike Names For Security Challenges. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :57–67.
Motivated by the need to automatically generate behavior-based security challenges to improve user authentication for web services, we consider the problem of large-scale construction of realistic-looking names to serve as aliases for real individuals. We aim to use these names to construct security challenges, where users are asked to identify their real contacts among a presented pool of names. We seek these look-alike names to preserve name characteristics like gender, ethnicity, and popularity, while being unlinkable back to the source individual, thereby making the real contacts not easily guessable by attackers. To achive this, we introduce the technique of distributed name embeddings, representing names in a high-dimensional space such that distance between name components reflects the degree of cultural similarity between these strings. We present different approaches to construct name embeddings from contact lists observed at a large web-mail provider, and evaluate their cultural coherence. We demonstrate that name embeddings strongly encode gender and ethnicity, as well as name popularity. We applied this algorithm to generate imitation names in email contact list challenge. Our controlled user study verified that the proposed technique reduced the attacker's success rate to 26.08%, indistinguishable from random guessing, compared to a success rate of 62.16% from previous name generation algorithms. Finally, we use these embeddings to produce an open synthetic name resource of 1 million names for security applications, constructed to respect both cultural coherence and U.S. census name frequencies.
2017-04-24
Halawa, Hassan, Beznosov, Konstantin, Boshmaf, Yazan, Coskun, Baris, Ripeanu, Matei, Santos-Neto, Elizeu.  2016.  Harvesting the Low-hanging Fruits: Defending Against Automated Large-scale Cyber-intrusions by Focusing on the Vulnerable Population. Proceedings of the 2016 New Security Paradigms Workshop. :11–22.

The orthodox paradigm to defend against automated social-engineering attacks in large-scale socio-technical systems is reactive and victim-agnostic. Defenses generally focus on identifying the attacks/attackers (e.g., phishing emails, social-bot infiltrations, malware offered for download). To change the status quo, we propose to identify, even if imperfectly, the vulnerable user population, that is, the users that are likely to fall victim to such attacks. Once identified, information about the vulnerable population can be used in two ways. First, the vulnerable population can be influenced by the defender through several means including: education, specialized user experience, extra protection layers and watchdogs. In the same vein, information about the vulnerable population can ultimately be used to fine-tune and reprioritize defense mechanisms to offer differentiated protection, possibly at the cost of additional friction generated by the defense mechanism. Secondly, information about the user population can be used to identify an attack (or compromised users) based on differences between the general and the vulnerable population. This paper considers the implications of the proposed paradigm on existing defenses in three areas (phishing of user credentials, malware distribution and socialbot infiltration) and discusses how using knowledge of the vulnerable population can enable more robust defenses.