Biblio
Extensible Cyber-Physical Systems (CPS) are loosely connected, multi-domain platforms that "virtualize" their resources to provide an open platform capable of hosting different cyber-physical applications. These cyber-physical platforms are extensible since resources and applications can be added or removed at any time. However, realizing such platform requires resolving challenges emanating from different properties; for this paper, we focus on resilience. Resilience is important for extensible CPS to make sure that extensibility of a system doesn't result in failures and anomalies.
The emerging trends of volatile distributed energy resources and micro-grids are putting pressure on electrical power system infrastructure. This pressure is motivating the integration of digital technology and advanced power-industry practices to improve the management of distributed electricity generation, transmission, and distribution, thereby creating a web of systems. Unlike legacy power system infrastructure, however, this emerging next-generation smart grid should be context-aware and adaptive to enable the creation of applications needed to enhance grid robustness and efficiency. This paper describes key factors that are driving the architecture of smart grids and describes orchestration middleware needed to make the infrastructure resilient. We use an example of adaptive protection logic in smart grid substations as a use case to motivate the need for contextawareness and adaptivity.