Visible to the public Biblio

Filters: Author is Kaplan, Lance  [Clear All Filters]
2023-02-24
Abdelzaher, Tarek, Bastian, Nathaniel D., Jha, Susmit, Kaplan, Lance, Srivastava, Mani, Veeravalli, Venugopal V..  2022.  Context-aware Collaborative Neuro-Symbolic Inference in IoBTs. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1053—1058.
IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features integrated neuro-symbolic inference, where symbolic context is used by deep learning, and deep learning models provide atomic concepts for symbolic reasoning. The incorporation of high-level symbolic reasoning improves data efficiency during training and makes inference more robust, interpretable, and resource-efficient. In this paper, we identify the key challenges in developing context-aware collaborative neuro-symbolic inference in IoBTs and review some recent progress in addressing these gaps.
2017-05-16
Wan, Mengting, Chen, Xiangyu, Kaplan, Lance, Han, Jiawei, Gao, Jing, Zhao, Bo.  2016.  From Truth Discovery to Trustworthy Opinion Discovery: An Uncertainty-Aware Quantitative Modeling Approach. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1885–1894.

In this era of information explosion, conflicts are often encountered when information is provided by multiple sources. Traditional truth discovery task aims to identify the truth the most trustworthy information, from conflicting sources in different scenarios. In this kind of tasks, truth is regarded as a fixed value or a set of fixed values. However, in a number of real-world cases, objective truth existence cannot be ensured and we can only identify single or multiple reliable facts from opinions. Different from traditional truth discovery task, we address this uncertainty and introduce the concept of trustworthy opinion of an entity, treat it as a random variable, and use its distribution to describe consistency or controversy, which is particularly difficult for data which can be numerically measured, i.e. quantitative information. In this study, we focus on the quantitative opinion, propose an uncertainty-aware approach called Kernel Density Estimation from Multiple Sources (KDEm) to estimate its probability distribution, and summarize trustworthy information based on this distribution. Experiments indicate that KDEm not only has outstanding performance on the classical numeric truth discovery task, but also shows good performance on multi-modality detection and anomaly detection in the uncertain-opinion setting.