Biblio
Anomaly detection generally involves the extraction of features from entities' or users' properties, and the design of anomaly detection models using machine learning or deep learning algorithms. However, only considering entities' property information could lead to high false positives. We posit the importance of also considering connections or relationships between entities in the detecting of anomalous behaviors and associated threat groups. Therefore, in this paper, we design a GCN (graph convolutional networks) based anomaly detection model to detect anomalous behaviors of users and malicious threat groups. The GCN model could characterize entities' properties and structural information between them into graphs. This allows the GCN based anomaly detection model to detect both anomalous behaviors of individuals and associated anomalous groups. We then evaluate the proposed model using a real-world insider threat data set. The results show that the proposed model outperforms several state-of-art baseline methods (i.e., random forest, logistic regression, SVM, and CNN). Moreover, the proposed model can also be applied to other anomaly detection applications.
There has been a tremendous increase in popularity and adoption of wearable fitness trackers. These fitness trackers predominantly use Bluetooth Low Energy (BLE) for communicating and syncing the data with user's smartphone. This paper presents a measurement-driven study of possible privacy leakage from BLE communication between the fitness tracker and the smartphone. Using real BLE traffic traces collected in the wild and in controlled experiments, we show that majority of the fitness trackers use unchanged BLE address while advertising, making it feasible to track them. The BLE traffic of the fitness trackers is found to be correlated with the intensity of user's activity, making it possible for an eavesdropper to determine user's current activity (walking, sitting, idle or running) through BLE traffic analysis. Furthermore, we also demonstrate that the BLE traffic can represent user's gait which is known to be distinct from user to user. This makes it possible to identify a person (from a small group of users) based on the BLE traffic of her fitness tracker. As BLE-based wearable fitness trackers become widely adopted, our aim is to identify important privacy implications of their usage and discuss prevention strategies.