Visible to the public Biblio

Filters: Author is Midi, Daniele  [Clear All Filters]
2018-06-07
Rullo, Antonino, Midi, Daniele, Serra, Edoardo, Bertino, Elisa.  2017.  A Game of Things: Strategic Allocation of Security Resources for IoT. Proceedings of the Second International Conference on Internet-of-Things Design and Implementation. :185–190.
In many Internet of Thing (IoT) application domains security is a critical requirement, because malicious parties can undermine the effectiveness of IoT-based systems by compromising single components and/or communication channels. Thus, a security infrastructure is needed to ensure the proper functioning of such systems even under attack. However, it is also critical that security be at a reasonable resource and energy cost, as many IoT devices may not have sufficient resources to host expensive security tools. In this paper, we focus on the problem of efficiently and effectively securing IoT networks by carefully allocating security tools. We model our problem according to game theory, and provide a Pareto-optimal solution, in which the cost of the security infrastructure, its energy consumption, and the probability of a successful attack, are minimized. Our experimental evaluation shows that our technique improves the system robustness in terms of packet delivery rate for different network topologies.
2017-05-17
Oluwatimi, Oyindamola, Midi, Daniele, Bertino, Elisa.  2016.  A Context-Aware System to Secure Enterprise Content. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :63–72.

In this paper, we present an architecture and implementation of a secure, automated, proximity-based access control that we refer to as Context-Aware System to Secure Enterprise Content (CASSEC). Using the pervasive WiFi and Bluetooth wireless devices as components in our underlying positioning infrastructure, CASSEC addresses two proximity-based scenarios often encountered in enterprise environments: Separation of Duty and Absence of Other Users. The first scenario is achieved by using Bluetooth MAC addresses of nearby occupants as authentication tokens. The second scenario exploits the interference of WiFi received signal strength when an occupant crosses the line of sight (LOS). Regardless of the scenario, information about the occupancy of a particular location is periodically extracted to support continuous authentication. To the best of our knowledge, our approach is the first to incorporate WiFi signal interference caused by occupants as part of proximity-based access control system. Our results demonstrate that it is feasible to achieve great accuracy in localization of occupants in a monitored room.