Visible to the public Biblio

Filters: Author is Croman, Kyle  [Clear All Filters]
2017-10-03
Zhang, Fan, Cecchetti, Ethan, Croman, Kyle, Juels, Ari, Shi, Elaine.  2016.  Town Crier: An Authenticated Data Feed for Smart Contracts. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :270–282.

Smart contracts are programs that execute autonomously on blockchains. Their key envisioned uses (e.g. financial instruments) require them to consume data from outside the blockchain (e.g. stock quotes). Trustworthy data feeds that support a broad range of data requests will thus be critical to smart contract ecosystems. We present an authenticated data feed system called Town Crier (TC). TC acts as a bridge between smart contracts and existing web sites, which are already commonly trusted for non-blockchain applications. It combines a blockchain front end with a trusted hardware back end to scrape HTTPS-enabled websites and serve source-authenticated data to relying smart contracts. TC also supports confidentiality. It enables private data requests with encrypted parameters. Additionally, in a generalization that executes smart-contract logic within TC, the system permits secure use of user credentials to scrape access-controlled online data sources. We describe TC's design principles and architecture and report on an implementation that uses Intel's recently introduced Software Guard Extensions (SGX) to furnish data to the Ethereum smart contract system. We formally model TC and define and prove its basic security properties in the Universal Composibility (UC) framework. Our results include definitions and techniques of general interest relating to resource consumption (Ethereum's "gas" fee system) and TCB minimization. We also report on experiments with three example applications. We plan to launch TC soon as an online public service.

2017-05-17
Miller, Andrew, Xia, Yu, Croman, Kyle, Shi, Elaine, Song, Dawn.  2016.  The Honey Badger of BFT Protocols. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :31–42.

The surprising success of cryptocurrencies has led to a surge of interest in deploying large scale, highly robust, Byzantine fault tolerant (BFT) protocols for mission-critical applications, such as financial transactions. Although the conventional wisdom is to build atop a (weakly) synchronous protocol such as PBFT (or a variation thereof), such protocols rely critically on network timing assumptions, and only guarantee liveness when the network behaves as expected. We argue these protocols are ill-suited for this deployment scenario. We present an alternative, HoneyBadgerBFT, the first practical asynchronous BFT protocol, which guarantees liveness without making any timing assumptions. We base our solution on a novel atomic broadcast protocol that achieves optimal asymptotic efficiency. We present an implementation and experimental results to show our system can achieve throughput of tens of thousands of transactions per second, and scales to over a hundred nodes on a wide area network. We even conduct BFT experiments over Tor, without needing to tune any parameters. Unlike the alternatives, HoneyBadgerBFT simply does not care about the underlying network.