Visible to the public Biblio

Filters: Author is Guan, Xiaohong  [Clear All Filters]
2022-04-19
Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
2018-09-12
Tian, Jue, Tan, Rui, Guan, Xiaohong, Liu, Ting.  2017.  Hidden Moving Target Defense in Smart Grids. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :21–26.
Recent research has proposed a moving target defense (MTD) approach that actively changes transmission line susceptance to preclude stealthy false data injection (FDI) attacks against the state estimation of a smart grid. However, existing studies were often conducted under a less adversarial setting, in that they ignore the possibility that an alert attacker can also try to detect the activation of MTD and then cancel any FDI attack until they learn the new system configuration after MTD. Indeed, in this paper, we show that this can be achieved easily by the attacker. To improve the stealthiness of MTD against the attacker, we propose a hidden MTD approach that maintains the power flows of the whole grid after MTD. We develop an algorithm to construct the hidden MTD and analyze its feasibility condition when only a subset of transmission lines can adjust susceptance. Simulations are conducted to demonstrate the effectiveness of the hidden MTD against alert attackers under realistic settings.
2017-05-17
Qiao, Siyi, Hu, Chengchen, Guan, Xiaohong, Zou, Jianhua.  2016.  Taming the Flow Table Overflow in OpenFlow Switch. Proceedings of the 2016 ACM SIGCOMM Conference. :591–592.

SDN has become the wide area network technology, which the academic and industry most concerned about.The limited table sizes of today’s SDN switches has turned to the most prominent short planks in the network design implementation. TCAM based flow table can provide an excellent matching performance while it really costs much. Even the flow table overflow cannot be prevented by a fixed-capacity flow table. In this paper, we design FTS(Flow Table Sharing) mechanism that can improve the performance disaster caused by overflow. We demonstrate that FTS reduces both control messages quantity and RTT time by two orders of magnitude compared to current state-of-the-art OpenFlow table-miss handler.