Visible to the public Biblio

Filters: Author is Zhang, Dongmei  [Clear All Filters]
2022-10-13
Li, Xue, Zhang, Dongmei, Wu, Bin.  2020.  Detection method of phishing email based on persuasion principle. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:571—574.
“Phishing emails” are phishing emails with illegal links that direct users to pages of some real websites that are spoofed, or pages where real HTML has been inserted with dangerous HTML code, so as to deceive users' private information such as bank or credit card account numbers, email account numbers, and passwords. People are the most vulnerable part of security. Phishing emails use human weaknesses to attack. This article describes the application of the principle of persuasion in phishing emails, and based on the existing methods, this paper proposes a phishing email detection method based on the persuasion principle. The principle of persuasion principle is to count whether the corresponding word of the feature appears in the mail. The feature is selected using an information gain algorithm, and finally 25 features are selected for detection. Finally experimentally verified, accuracy rate reached 99.6%.
2020-03-02
Li, Wei, Zhang, Dongmei.  2019.  RSSI Sequence and Vehicle Driving Matrix Based Sybil Nodes Detection in VANET. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :763–767.

In VANET, Sybil nodes generated by attackers cause serious damages to network protocols, resource allocation mechanisms, and reputation models. Other types of attacks can also be launched on the basis of Sybil attack, which bring more threats to VANET. To solve this problem, this paper proposes a Sybil nodes detection method based on RSSI sequence and vehicle driving matrix - RSDM. RSDM evaluates the difference between the RSSI sequence and the driving matrix by dynamic distance matching to detect Sybil nodes. Moreover, RSDM does not rely on VANET infrastructure, neighbor nodes or specific hardware. The experimental results show that RSDM performs well with a higher detection rate and a lower error rate.

2017-05-18
Gu, Xiaodong, Zhang, Hongyu, Zhang, Dongmei, Kim, Sunghun.  2016.  Deep API Learning. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :631–642.

Developers often wonder how to implement a certain functionality (e.g., how to parse XML files) using APIs. Obtaining an API usage sequence based on an API-related natural language query is very helpful in this regard. Given a query, existing approaches utilize information retrieval models to search for matching API sequences. These approaches treat queries and APIs as bags-of-words and lack a deep understanding of the semantics of the query. We propose DeepAPI, a deep learning based approach to generate API usage sequences for a given natural language query. Instead of a bag-of-words assumption, it learns the sequence of words in a query and the sequence of associated APIs. DeepAPI adapts a neural language model named RNN Encoder-Decoder. It encodes a word sequence (user query) into a fixed-length context vector, and generates an API sequence based on the context vector. We also augment the RNN Encoder-Decoder by considering the importance of individual APIs. We empirically evaluate our approach with more than 7 million annotated code snippets collected from GitHub. The results show that our approach generates largely accurate API sequences and outperforms the related approaches.