Biblio
Using Software-defined Networks in wide area (SDN-WAN) has been strongly emerging in the past years. Due to scalability and economical reasons, SDN-WAN mostly uses an in-band control mechanism, which implies that control and data sharing the same critical physical links. However, the in-band control and centralized control architecture can be exploited by attackers to launch distributed denial of service (DDoS) on SDN control plane by flooding the shared links and/or the Open flow agents. Therefore, constructing a resilient software designed network requires dynamic isolation and distribution of the control flow to minimize damage and significantly increase attack cost. Existing solutions fall short to address this challenge because they require expensive extra dedicated resources or changes in OpenFlow protocol. In this paper, we propose a moving target technique called REsilient COntrol Network architecture (ReCON) that uses the same SDN network resources to defend SDN control plane dynamically against the DDoS attacks. ReCON essentially, (1) minimizes the sharing of critical resources among data and control traffic, and (2) elastically increases the limited capacity of the software control agents on-demand by dynamically using the under-utilized resources from within the same SDN network. To implement a practical solution, we formalize ReCON as a constraints satisfaction problem using Satisfiability Modulo Theory (SMT) to guarantee a correct-by-construction control plan placement that can handle dynamic network conditions.
Blacklisting IP addresses is an important part of enterprise security today. Malware infections and Advanced Persistent Threats can be detected when blacklisted IP addresses are contacted. It can also thwart phishing attacks by blocking suspicious websites. An unknown binary file may be executed in a sandbox by a modern firewall. It is blocked if it attempts to contact a blacklisted IP address. However, today's providers of IP blacklists are based on observed malicious activities, collected from multiple sources around the world. Attackers can evade those reactive IP blacklist defense by using IP addresses that have not been recently engaged in malicious activities. In this paper, we report an approach that can predict IP addresses that are likely to be used in malicious activities in the near future. Our evaluation shows that this approach can detect 88% of zero-day malware instances missed by top five antivirus products. It can also block 68% of phishing websites before reported by Phishtank.
Scientific advancement is fueled by solid fundamental research, followed by replication, meta-analysis, and theory building. To support such advancement, researchers and government agencies have been working towards a "science of security". As in other sciences, security science requires high-quality fundamental research addressing important problems and reporting approaches that capture the information necessary for replication, meta-analysis, and theory building. The goal of this paper is to aid security researchers in establishing a baseline of the state of scientific reporting in security through an analysis of indicators of scientific research as reported in top security conferences, specifically the 2015 ACM CCS and 2016 IEEE S&P proceedings. To conduct this analysis, we employed a series of rubrics to analyze the completeness of information reported in papers relative to the type of evaluation used (e.g. empirical study, proof, discussion). Our findings indicated some important information is often missing from papers, including explicit documentation of research objectives and the threats to validity. Our findings show a relatively small number of replications reported in the literature. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
While existing proactive-based paradigms such as address mutation are effective in slowing down reconnaissance by naive attackers, they are ineffective against skilled human attackers. In this paper, we analytically show that the goal of defeating reconnaissance by skilled human attackers is only achievable by an integration of five defensive dimensions: (1) mutating host addresses, (2) mutating host fingerprints, (3) anonymizing host fingerprints, (4) deploying high-fidelity honeypots with context-aware fingerprints, and (5) deploying context-aware content on those honeypots. Using a novel class of honeypots, referred to as proxy honeypots (high-interaction honeypots with customizable fingerprints), we propose a proactive defense model, called (HIDE), that constantly mutates addresses and fingerprints of network hosts and proxy honeypots in a manner that maximally anonymizes identity of network hosts. The objective is to make a host untraceable over time by not letting even skilled attackers reuse discovered attributes of a host in previous scanning, including its addresses and fingerprint, to identify that host again. The mutations are generated through formal definition and modeling the problem. Using a red teaming evaluation with a group of white-hat hackers, we evaluated our five-dimensional defense model and compared its effectiveness with alternative and competing scenarios. These experiments as well as our analytical evaluation show that by anonymizing all identifying attributes of a host/honeypot over time, HIDE is able to significantly complicate reconnaissance, even for highly skilled human attackers.
After decades of cyber warfare, it is well-known that the static and predictable behavior of cyber configuration provides a great advantage to adversaries to plan and launch their attack successfully. At the same time, as cyber attacks are getting highly stealthy and more sophisticated, their detection and mitigation become much harder and expensive. We developed a new foundation for moving target defense (MTD) based on cyber mutation, as a new concept in cybersecurity to reverse this asymmetry in cyber warfare by embedding agility into cyber systems. Cyber mutation enables cyber systems to automatically change its configuration parameters in unpredictable, safe and adaptive manner in order to proactively achieve one or more of the following MTD goals: (1) deceiving attackers from reaching their goals, (2) disrupting their plans via changing adversarial behaviors, and (3) deterring adversaries by prohibitively increasing the attack effort and cost. In this talk, we will present the formal foundations, metrics and framework for developing effective cyber mutation techniques. The talk will also review several examples of developed techniques including Random Host Mutation, Random Rout Mutation, fingerprinting mutation, and mutable virtual networks. The talk will also address the evaluation and lessons learned for advancing the future research in this area.
The deterministic nature of existing routing protocols has resulted into an ossified Internet with static and predictable network routes. This gives persistent attackers (e.g. eavesdroppers and DDoS attackers) plenty of time to study the network and identify the vulnerable (critical) links to plan devastating and stealthy attacks. Recently, Moving Target Defense (MTD) based approaches have been proposed to to defend against DoS attacks. However, MTD based approaches for route mutation are oriented towards re-configuring the parameters in Local Area Networks (LANs), and do not provide any protection against infrastructure level attacks, which inherently limits their use for mission critical services over the Internet infrastructure. To cope with these issues, we extend the current routing architecture to consider end-hosts as routing elements, and present a formal method based agile defense mechanism to embed resiliency in the existing cyber infrastructure. The major contributions of this paper include: (1) formalization of efficient and resilient End to End (E2E) reachability problem as a constraint satisfaction problem, which identifies the potential end-hosts to reach a destination while satisfying resilience and QoS constraints, (2) design and implementation of a novel decentralized End Point Route Mutation (EPRM) protocol, and (3) design and implementation of planning algorithm to minimize the overlap between multiple flows, for the sake of maximizing the agility in the system. Our PlanetLab based implementation and evaluation validates the correctness, effectiveness and scalability of the proposed approach.
Scientific advancement is fueled by solid fundamental research, followed by replication, meta-analysis, and theory building. To support such advancement, researchers and government agencies have been working towards a "science of security". As in other sciences, security science requires high-quality fundamental research addressing important problems and reporting approaches that capture the information necessary for replication, meta-analysis, and theory building. The goal of this paper is to aid security researchers in establishing a baseline of the state of scientific reporting in security through an analysis of indicators of scientific research as reported in top security conferences, specifically the 2015 ACM CCS and 2016 IEEE S&P proceedings. To conduct this analysis, we employed a series of rubrics to analyze the completeness of information reported in papers relative to the type of evaluation used (e.g. empirical study, proof, discussion). Our findings indicated some important information is often missing from papers, including explicit documentation of research objectives and the threats to validity. Our findings show a relatively small number of replications reported in the literature. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.