Visible to the public Biblio

Filters: Author is Tarkoma, Sasu  [Clear All Filters]
2017-06-05
Hafeez, Ibbad, Ding, Aaron Yi, Suomalainen, Lauri, Kirichenko, Alexey, Tarkoma, Sasu.  2016.  Securebox: Toward Safer and Smarter IoT Networks. Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking. :55–60.

In this paper we present Securebox, an affordable and deployable platform for securing and managing IoT networks. Our proposal targets an alarming spot in the fast growing IoT industry where security is often overlooked due to device limitation, budget constraint, and development deadline. In contrast to existing host-centric and hardware-coupled solutions, Securebox empowers a cloud-assisted "charge for network service" model that is dedicated to budget and resource constrained IoT environments. Owing to its cloud-driven and modular design, Securebox allows us to 1) flexibly offload and onload security and management functions to the cloud and network edge components; 2) offer advanced security and management services to end users in an affordable and on-demand manner; 3) ease the upgrade and deployment of new services to guard against abrupt security breakouts. To demonstrate Securebox, we have implemented the platform consisting of a plug-n-play frontend, a Kubernetes-powered backend cluster, and a smartphone mobile application. Based on the testbed evaluation, we show that Securebox is robust and responsive. Its collaborative and extensible architecture enforces rapid update cycles and can scale with the growing diversity of IoT devices.

2017-05-18
Flores, Huber, Sharma, Rajesh, Ferreira, Denzil, Luo, Chu, Kostakos, Vassilis, Tarkoma, Sasu, Hui, Pan, Li, Yong.  2016.  Social-aware Device-to-device Communication: A Contribution for Edge and Fog Computing? Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. :1466–1471.

The exploitation of the opportunistic infrastructure via Device-to-Device (D2D) communication is a critical component towards the adoption of new paradigms such as edge and fog computing. While a lot of work has demonstrated the great potential of D2D communication, it is still unclear whether the benefits of the D2D approach can really be leveraged in practice. In this paper, we develop a software sensor, namely Detector, which senses the infrastructure in proximity of a mobile user. We analyze and evaluate D2D on the wild, i.e., not in simulations. We found that in a realistic environment, a mobile is always co-located in proximity to at least one other mobile device throughout the day. This suggests that a device can schedule tasks processing in coordination with other devices, potentially more powerful, instead of handling the processing of the tasks by itself.