Visible to the public Biblio

Filters: Author is Ma, Kwan-Liu  [Clear All Filters]
2022-05-19
Zhang, Xiaoyu, Fujiwara, Takanori, Chandrasegaran, Senthil, Brundage, Michael P., Sexton, Thurston, Dima, Alden, Ma, Kwan-Liu.  2021.  A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data. 2021 IEEE 14th Pacific Visualization Symposium (PacificVis). :196–205.
Analysis of large, high-dimensional, and heterogeneous datasets is challenging as no one technique is suitable for visualizing and clustering such data in order to make sense of the underlying information. For instance, heterogeneous logs detailing machine repair and maintenance in an organization often need to be analyzed to diagnose errors and identify abnormal patterns, formalize root-cause analyses, and plan preventive maintenance. Such real-world datasets are also beset by issues such as inconsistent and/or missing entries. To conduct an effective diagnosis, it is important to extract and understand patterns from the data with support from analytic algorithms (e.g., finding that certain kinds of machine complaints occur more in the summer) while involving the human-in-the-loop. To address these challenges, we adopt existing techniques for dimensionality reduction (DR) and clustering of numerical, categorical, and text data dimensions, and introduce a visual analytics approach that uses multiple coordinated views to connect DR + clustering results across each kind of the data dimension stated. To help analysts label the clusters, each clustering view is supplemented with techniques and visualizations that contrast a cluster of interest with the rest of the dataset. Our approach assists analysts to make sense of machine maintenance logs and their errors. Then the gained insights help them carry out preventive maintenance. We illustrate and evaluate our approach through use cases and expert studies respectively, and discuss generalization of the approach to other heterogeneous data.
2018-01-10
Chu, Jacqueline, Bryan, Chris, Shih, Min, Ferrer, Leonardo, Ma, Kwan-Liu.  2017.  Navigable Videos for Presenting Scientific Data on Affordable Head-Mounted Displays. Proceedings of the 8th ACM on Multimedia Systems Conference. :250–260.
Immersive, stereoscopic visualization enables scientists to better analyze structural and physical phenomena compared to traditional display mediums. Unfortunately, current head-mounted displays (HMDs) with the high rendering quality necessary for these complex datasets are prohibitively expensive, especially in educational settings where their high cost makes it impractical to buy several devices. To address this problem, we develop two tools: (1) An authoring tool allows domain scientists to generate a set of connected, 360° video paths for traversing between dimensional keyframes in the dataset. (2) A corresponding navigational interface is a video selection and playback tool that can be paired with a low-cost HMD to enable an interactive, non-linear, storytelling experience. We demonstrate the authoring tool's utility by conducting several case studies and assess the navigational interface with a usability study. Results show the potential of our approach in effectively expanding the accessibility of high-quality, immersive visualization to a wider audience using affordable HMDs.
2017-05-18
Ross, Caitlin, Carothers, Christopher D., Mubarak, Misbah, Carns, Philip, Ross, Robert, Li, Jianping Kelvin, Ma, Kwan-Liu.  2016.  Visual Data-analytics of Large-scale Parallel Discrete-event Simulations. Proceedings of the 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems. :87–97.

Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of high-performance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has to gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a scaling study that compares instrumented ROSS simulations with their noninstrumented counterparts in order to determine the amount of perturbation when running at different simulation scales.