Visible to the public Biblio

Filters: Author is Felber, Pascal  [Clear All Filters]
2022-07-29
Ménétrey, Jämes, Pasin, Marcelo, Felber, Pascal, Schiavoni, Valerio.  2021.  Twine: An Embedded Trusted Runtime for WebAssembly. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :205—216.
WebAssembly is an Increasingly popular lightweight binary instruction format, which can be efficiently embedded and sandboxed. Languages like C, C++, Rust, Go, and many others can be compiled into WebAssembly. This paper describes Twine, a WebAssembly trusted runtime designed to execute unmodified, language-independent applications. We leverage Intel SGX to build the runtime environment without dealing with language-specific, complex APIs. While SGX hardware provides secure execution within the processor, Twine provides a secure, sandboxed software runtime nested within an SGX enclave, featuring a WebAssembly system interface (WASI) for compatibility with unmodified WebAssembly applications. We evaluate Twine with a large set of general-purpose benchmarks and real-world applications. In particular, we used Twine to implement a secure, trusted version of SQLite, a well-known full-fledged embeddable database. We believe that such a trusted database would be a reasonable component to build many larger application services. Our evaluation shows that SQLite can be fully executed inside an SGX enclave via WebAssembly and existing system interface, with similar average performance overheads. We estimate that the performance penalties measured are largely compensated by the additional security guarantees and its full compatibility with standard WebAssembly. An indepth analysis of our results indicates that performance can be greatly improved by modifying some of the underlying libraries. We describe and implement one such modification in the paper, showing up to 4.1 × speedup. Twine is open-source, available at GitHub along with instructions to reproduce our experiments.
2019-12-09
Correia, Andreia, Felber, Pascal, Ramalhete, Pedro.  2018.  Romulus: Efficient Algorithms for Persistent Transactional Memory. Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. :271–282.
Byte addressable persistent memory eliminates the need for serialization and deserialization of data, to and from persistent storage, allowing applications to interact with it through common store and load instructions. In the event of a process or system failure, applications rely on persistent techniques to provide consistent storage of data in non-volatile memory (NVM). For most of these techniques, consistency is ensured through logging of updates, with consequent intensive cache line flushing and persistent fences necessary to guarantee correctness. Undo log based approaches require store interposition and persistence fences before each in-place modification. Redo log based techniques can execute transactions using just two persistence fences, although they require store and load interposition which may incur a performance penalty for large transactions. So far, these techniques have been difficult to integrate with known memory allocators, requiring allocators or garbage collectors specifically designed for NVM. We present Romulus, a user-level library persistent transactional memory (PTM) which provides durable transactions through the usage of twin copies of the data. A transaction in Romulus requires at most four persistence fences, regardless of the transaction size. Romulus uses only store interposition. Any sequential implementation of a memory allocator can be adapted to work with Romulus. Thanks to its lightweight design and low synchronization overhead, Romulus achieves twice the throughput of current state of the art PTMs in update-only workloads, and more than one order of magnitude in read-mostly scenarios.
2019-08-26
Oleksenko, Oleksii, Kuvaiskii, Dmitrii, Bhatotia, Pramod, Felber, Pascal, Fetzer, Christof.  2018.  Intel MPX Explained: A Cross-Layer Analysis of the Intel MPX System Stack. Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems. :111-112.

Memory-safety violations are the primary cause of security and reliability issues in software systems written in unsafe languages. Given the limited adoption of decades-long research in software-based memory safety approaches, as an alternative, Intel released Memory Protection Extensions (MPX)–-a hardware-assisted technique to achieve memory safety. In this work, we perform an exhaustive study of Intel MPX architecture along three dimensions: (a) performance overheads, (b) security guarantees, and (c) usability issues. We present the first detailed root cause analysis of problems in the Intel MPX architecture through a cross-layer dissection of the entire system stack, involving the hardware, operating system, compilers, and applications. To put our findings into perspective, we also present an in-depth comparison of Intel MPX with three prominent types of software-based memory safety approaches. Lastly, based on our investigation, we propose directions for potential changes to the Intel MPX architecture to aid the design space exploration of future hardware extensions for memory safety. A complete version of this work appears in the 2018 proceedings of the ACM on Measurement and Analysis of Computing Systems.

2018-06-11
Havet, Aurélien, Pires, Rafael, Felber, Pascal, Pasin, Marcelo, Rouvoy, Romain, Schiavoni, Valerio.  2017.  SecureStreams: A Reactive Middleware Framework for Secure Data Stream Processing. Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems. :124–133.
The growing adoption of distributed data processing frameworks in a wide diversity of application domains challenges end-to-end integration of properties like security, in particular when considering deployments in the context of large-scale clusters or multi-tenant Cloud infrastructures. This paper therefore introduces SecureStreams, a reactive middleware framework to deploy and process secure streams at scale. Its design combines the high-level reactive dataflow programming paradigm with Intel®'s low-level software guard extensions (SGX) in order to guarantee privacy and integrity of the processed data. The experimental results of SecureStreams are promising: while offering a fluent scripting language based on Lua, our middleware delivers high processing throughput, thus enabling developers to implement secure processing pipelines in just few lines of code.
2017-05-19
Pires, Rafael, Pasin, Marcelo, Felber, Pascal, Fetzer, Christof.  2016.  Secure Content-Based Routing Using Intel Software Guard Extensions. Proceedings of the 17th International Middleware Conference. :10:1–10:10.

Content-based routing (CBR) is a powerful model that supports scalable asynchronous communication among large sets of geographically distributed nodes. Yet, preserving privacy represents a major limitation for the wide adoption of CBR, notably when the routers are located in public clouds. Indeed, a CBR router must see the content of the messages sent by data producers, as well as the filters (or subscriptions) registered by data consumers. This represents a major deterrent for companies for which data is a key asset, as for instance in the case of financial markets or to conduct sensitive business-to-business transactions. While there exists some techniques for privacy-preserving computation, they are either prohibitively slow or too limited to be usable in real systems. In this paper, we follow a different strategy by taking advantage of trusted hardware extensions that have just been introduced in off-the-shelf processors and provide a trusted execution environment. We exploit Intel's new software guard extensions (SGX) to implement a CBR engine in a secure enclave. Thanks to the hardware-based trusted execution environment (TEE), the compute-intensive CBR operations can operate on decrypted data shielded by the enclave and leverage efficient matching algorithms. Extensive experimental evaluation shows that SGX adds only limited overhead to insecure plaintext matching outside secure enclaves while providing much better performance and more powerful filtering capabilities than alternative software-only solutions. To the best of our knowledge, this work is the first to demonstrate the practical benefits of SGX for privacy-preserving CBR.