Visible to the public Biblio

Filters: Author is Pastrana, Sergio  [Clear All Filters]
2023-06-02
Labrador, Víctor, Pastrana, Sergio.  2022.  Examining the trends and operations of modern Dark-Web marketplaces. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :163—172.

Currently, the Dark Web is one key platform for the online trading of illegal products and services. Analysing the .onion sites hosting marketplaces is of interest for law enforcement and security researchers. This paper presents a study on 123k listings obtained from 6 different Dark Web markets. While most of current works leverage existing datasets, these are outdated and might not contain new products, e.g., those related to the 2020 COVID pandemic. Thus, we build a custom focused crawler to collect the data. Being able to conduct analyses on current data is of considerable importance as these marketplaces continue to change and grow, both in terms of products offered and users. Also, there are several anti-crawling mechanisms being improved, making this task more difficult and, consequently, reducing the amount of data obtained in recent years on these marketplaces. We conduct a data analysis evaluating multiple characteristics regarding the products, sellers, and markets. These characteristics include, among others, the number of sales, existing categories in the markets, the origin of the products and the sellers. Our study sheds light on the products and services being offered in these markets nowadays. Moreover, we have conducted a case study on one particular productive and dynamic drug market, i.e., Cannazon. Our initial goal was to understand its evolution over time, analyzing the variation of products in stock and their price longitudinally. We realized, though, that during the period of study the market suffered a DDoS attack which damaged its reputation and affected users' trust on it, which was a potential reason which lead to the subsequent closure of the market by its operators. Consequently, our study provides insights regarding the last days of operation of such a productive market, and showcases the effectiveness of a potential intervention approach by means of disrupting the service and fostering mistrust.

2017-08-22
Alberca, Carlos, Pastrana, Sergio, Suarez-Tangil, Guillermo, Palmieri, Paolo.  2016.  Security Analysis and Exploitation of Arduino Devices in the Internet of Things. Proceedings of the ACM International Conference on Computing Frontiers. :437–442.

The pervasive presence of interconnected objects enables new communication paradigms where devices can easily reach each other while interacting within their environment. The so-called Internet of Things (IoT) represents the integration of several computing and communications systems aiming at facilitating the interaction between these devices. Arduino is one of the most popular platforms used to prototype new IoT devices due to its open, flexible and easy-to-use architecture. Ardunio Yun is a dual board microcontroller that supports a Linux distribution and it is currently one of the most versatile and powerful Arduino systems. This feature positions Arduino Yun as a popular platform for developers, but it also introduces unique infection vectors from the security viewpoint. In this work, we present a security analysis of Arduino Yun. We show that Arduino Yun is vulnerable to a number of attacks and we implement a proof of concept capable of exploiting some of them.

2017-05-19
Garrido-Pelaz, Roberto, González-Manzano, Lorena, Pastrana, Sergio.  2016.  Shall We Collaborate?: A Model to Analyse the Benefits of Information Sharing Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security. :15–24.

Nowadays, both the amount of cyberattacks and their sophistication have considerably increased, and their prevention concerns many organizations. Cooperation by means of information sharing is a promising strategy to address this problem, but unfortunately it poses many challenges. Indeed, looking for a win-win environment is not straightforward and organizations are not properly motivated to share information. This work presents a model to analyse the benefits and drawbacks of information sharing among organizations that present a certain level of dependency. The proposed model applies functional dependency network analysis to emulate attacks propagation and game theory for information sharing management. We present a simulation framework implementing the model that allows for testing different sharing strategies under several network and attack settings. Experiments using simulated environments show how the proposed model provides insights on which conditions and scenarios are beneficial for information sharing.