Visible to the public Biblio

Filters: Author is Jao, David  [Clear All Filters]
2019-05-01
Urbanik, David, Jao, David.  2018.  SoK: The Problem Landscape of SIDH. Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop. :53–60.
The Supersingular Isogeny Diffie-Hellman protocol (SIDH) has recently been the subject of increased attention in the cryptography community. Conjecturally quantum-resistant, SIDH has the feature that it shares the same data flow as ordinary Diffie-Hellman: two parties exchange a pair of public keys, each generated from a private key, and combine them to form a shared secret. To create a potentially quantum-resistant scheme, SIDH depends on a new family of computational assumptions involving isogenies between supersingular elliptic curves which replace both the discrete logarithm problem and the computational and decisional Diffie-Hellman problems. As in the case of ordinary Diffie-Hellman, one is interested in knowing if these problems are related. In fact, more is true: there is a rich network of reductions between the isogeny problems securing the private keys of the participants in the SIDH protocol, the computational and decisional SIDH problems, and the problem of validating SIDH public keys. In this article we explain these relationships, which do not appear elsewhere in the literature, in hopes of providing a clearer picture of the SIDH problem landscape to the cryptography community at large.
2017-11-27
Leonardi, Christopher, Koziel, Brian, Kalach, Kassem, Jao, David, Azarderakhsh, Reza.  2016.  Key Compression for Isogeny-Based Cryptosystems.

We present a method for key compression in quantumresistant isogeny-based cryptosystems, which allows a reduction in and transmission costs of per-party public information by a factor of two, with no e ect on security. We achieve this reduction by associating a canonical choice of elliptic curve to each j-invariant, and representing elements on the curve as linear combinations with respect to a canonical choice of basis. This method of compressing public information can be applied to numerous isogeny-based protocols, such as key exchange, zero-knowledge identi cation, and public-key encryption. We performed personal computer and ARM implementations of the key exchange with compression and decompression in C and provided timing results, showing the computational cost of key compression and decompression at various security levels. Our results show that isogeny-based cryptosystems achieve by far the smallest possible key sizes among all existing families of post-quantum cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum 128-bit security level, comparable to (non-quantum) RSA key sizes.

2017-05-22
Azarderakhsh, Reza, Jao, David, Kalach, Kassem, Koziel, Brian, Leonardi, Christopher.  2016.  Key Compression for Isogeny-Based Cryptosystems. Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography. :1–10.

We present a method for key compression in quantumresistant isogeny-based cryptosystems, which allows a reduction in and transmission costs of per-party public information by a factor of two, with no e ect on security. We achieve this reduction by associating a canonical choice of elliptic curve to each j-invariant, and representing elements on the curve as linear combinations with respect to a canonical choice of basis. This method of compressing public information can be applied to numerous isogeny-based protocols, such as key exchange, zero-knowledge identi cation, and public-key encryption. We performed personal computer and ARM implementations of the key exchange with compression and decompression in C and provided timing results, showing the computational cost of key compression and decompression at various security levels. Our results show that isogeny-based cryptosystems achieve by far the smallest possible key sizes among all existing families of post-quantum cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum 128-bit security level, comparable to (non-quantum) RSA key sizes.