Visible to the public Biblio

Filters: Author is Lu, Long  [Clear All Filters]
2021-05-13
Sun, Zhichuang, Feng, Bo, Lu, Long, Jha, Somesh.  2020.  OAT: Attesting Operation Integrity of Embedded Devices. 2020 IEEE Symposium on Security and Privacy (SP). :1433—1449.

Due to the wide adoption of IoT/CPS systems, embedded devices (IoT frontends) become increasingly connected and mission-critical, which in turn has attracted advanced attacks (e.g., control-flow hijacks and data-only attacks). Unfortunately, IoT backends (e.g., remote controllers or in-cloud services) are unable to detect if such attacks have happened while receiving data, service requests, or operation status from IoT devices (remotely deployed embedded devices). As a result, currently, IoT backends are forced to blindly trust the IoT devices that they interact with.To fill this void, we first formulate a new security property for embedded devices, called "Operation Execution Integrity" or OEI. We then design and build a system, OAT, that enables remote OEI attestation for ARM-based bare-metal embedded devices. Our formulation of OEI captures the integrity of both control flow and critical data involved in an operation execution. Therefore, satisfying OEI entails that an operation execution is free of unexpected control and data manipulations, which existing attestation methods cannot check. Our design of OAT strikes a balance between prover's constraints (embedded devices' limited computing power and storage) and verifier's requirements (complete verifiability and forensic assistance). OAT uses a new control-flow measurement scheme, which enables lightweight and space-efficient collection of measurements (97% space reduction from the trace-based approach). OAT performs the remote control-flow verification through abstract execution, which is fast and deterministic. OAT also features lightweight integrity checking for critical data (74% less instrumentation needed than previous work). Our security analysis shows that OAT allows remote verifiers or IoT backends to detect both controlflow hijacks and data-only attacks that affect the execution of operations on IoT devices. In our evaluation using real embedded programs, OAT incurs a runtime overhead of 2.7%.

2018-01-23
Davidson, Drew, Chen, Yaohui, George, Franklin, Lu, Long, Jha, Somesh.  2017.  Secure Integration of Web Content and Applications on Commodity Mobile Operating Systems. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :652–665.

A majority of today's mobile apps integrate web content of various kinds. Unfortunately, the interactions between app code and web content expose new attack vectors: a malicious app can subvert its embedded web content to steal user secrets; on the other hand, malicious web content can use the privileges of its embedding app to exfiltrate sensitive information such as the user's location and contacts. In this paper, we discuss security weaknesses of the interface between app code and web content through attacks, then introduce defenses that can be deployed without modifying the OS. Our defenses feature WIREframe, a service that securely embeds and renders external web content in Android apps, and in turn, prevents attacks between em- bedded web and host apps. WIREframe fully mediates the interface between app code and embedded web content. Un- like the existing web-embedding mechanisms, WIREframe allows both apps and embedded web content to define simple access policies to protect their own resources. These policies recognize fine-grained security principals, such as origins, and control all interactions between apps and the web. We also introduce WIRE (Web Isolation Rewriting Engine), an offline app rewriting tool that allows app users to inject WIREframe protections into existing apps. Our evaluation, based on 7166 popular apps and 20 specially selected apps, shows these techniques work on complex apps and incur acceptable end-to-end performance overhead.

2017-05-22
Zhu, Suwen, Lu, Long, Singh, Kapil.  2016.  CASE: Comprehensive Application Security Enforcement on COTS Mobile Devices. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. :375–386.

Without violating existing app security enforcement, malicious modules inside apps, such as a library or an external class, can steal private data and abuse sensitive capabilities meant for other modules inside the same apps. These so-called "module-level attacks" are quickly emerging, fueled by the pervasive use of third-party code in apps and the lack of module-level security enforcement on mobile platforms. To systematically thwart the threats, we build CASE, an automatic app patching tool used by app developers to enable module-level security in their apps built for COTS Android devices. During runtime, patched apps enforce developer-supplied security policies that regulate interactions among modules at the granularity of a Java class. Requiring no changes or special support from the Android OS, the enforcement is complete in covering inter-module crossings in apps and is robust against malicious Java and native app modules. We evaluate CASE with 420 popular apps and a set of Android's unit tests. The results show that CASE is fully compatible with the tested apps and incurs an average performance overhead of 4.9%.