Visible to the public Biblio

Filters: Author is Camenisch, Jan  [Clear All Filters]
2022-08-12
Camenisch, Jan, Dubovitskaya, Maria, Rial, Alfredo.  2021.  Concise UC Zero-Knowledge Proofs for Oblivious Updatable Databases. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
We propose an ideal functionality FCD and a construction ΠCD for oblivious and updatable committed databases. FCD allows a prover P to read, write, and update values in a database and to prove to a verifier V in zero-knowledge (ZK) that a value is read from or written into a certain position. The following properties must hold: (1) values stored in the database remain hidden from V; (2) a value read from a certain position is equal to the value previously written into that position; (3) (obliviousness) both the value read or written and its position remain hidden from V.ΠCD is based on vector commitments. After the initialization phase, the cost of read and write operations is independent of the database size, outperforming other techniques that achieve cost sublinear in the dataset size for prover and/or verifier. Therefore, our construction is especially appealing for large datasets. In existing “commit-and-prove” two-party protocols, the task of maintaining a committed database between P and V and reading and writing values into it is not separated from the task of proving statements about the values read or written. FCD allows us to improve modularity in protocol design by separating those tasks. In comparison to simply using a commitment scheme to maintain a committed database, FCD allows P to hide efficiently the positions read or written from V. Thanks to this property, we design protocols for e.g. privacy-preserving e-commerce and location-based services where V gathers aggregate statistics about the statements that P proves in ZK.
2021-05-13
Camenisch, Jan, Drijvers, Manu, Lehmann, Anja, Neven, Gregory, Towa, Patrick.  2020.  Zone Encryption with Anonymous Authentication for V2V Communication. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :405—424.

Vehicle-to-vehicle (V2V) communication systems are currently being prepared for real-world deployment, but they face strong opposition over privacy concerns. Position beacon messages are the main culprit, being broadcast in cleartext and pseudonymously signed up to 10 times per second. So far, no practical solutions have been proposed to encrypt or anonymously authenticate V2V messages. We propose two cryptographic innovations that enhance the privacy of V2V communication. As a core contribution, we introduce zone-encryption schemes, where vehicles generate and authentically distribute encryption keys associated to static geographic zones close to their location. Zone encryption provides security against eavesdropping, and, combined with a suitable anonymous authentication scheme, ensures that messages can only be sent by genuine vehicles, while adding only 224 Bytes of cryptographic overhead to each message. Our second contribution is an authentication mechanism fine-tuned to the needs of V2V which allows vehicles to authentically distribute keys, and is called dynamic group signatures with attributes. Our instantiation features unlimited locally generated pseudonyms, negligible credential download-and-storage costs, identity recovery by a trusted authority, and compact signatures of 216 Bytes at a 128-bit security level.

2018-08-23
Camenisch, Jan, Drijvers, Manu, Dubovitskaya, Maria.  2017.  Practical UC-Secure Delegatable Credentials with Attributes and Their Application to Blockchain. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :683–699.
Certification of keys and attributes is in practice typically realized by a hierarchy of issuers. Revealing the full chain of issuers for certificate verification, however, can be a privacy issue since it can leak sensitive information about the issuer's organizational structure or about the certificate owner. Delegatable anonymous credentials solve this problem and allow one to hide the full delegation (issuance) chain, providing privacy during both delegation and presentation of certificates. However, the existing delegatable credentials schemes are not efficient enough for practical use. In this paper, we present the first hierarchical (or delegatable) anonymous credential system that is practical. To this end, we provide a surprisingly simple ideal functionality for delegatable credentials and present a generic construction that we prove secure in the UC model. We then give a concrete instantiation using a recent pairing-based signature scheme by Groth and describe a number of optimizations and efficiency improvements that can be made when implementing our concrete scheme. The latter might be of independent interest for other pairing-based schemes as well. Finally, we report on an implementation of our scheme in the context of transaction authentication for blockchain, and provide concrete performance figures.
2017-05-22
Camenisch, Jan, Drijvers, Manu, Hajny, Jan.  2016.  Scalable Revocation Scheme for Anonymous Credentials Based on N-times Unlinkable Proofs. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :123–133.

We propose the first verifier-local revocation scheme for privacy-enhancing attribute-based credentials (PABCs) that is practically usable in large-scale applications, such as national eID cards, public transportation and physical access control systems. By using our revocation scheme together with existing PABCs, it is possible to prove attribute ownership in constant time and verify the proof and the revocation status in the time logarithmic in the number of revoked users, independently of the number of all valid users in the system. Proofs can be efficiently generated using only offline constrained devices, such as existing smart-cards. These features are achieved by using a new construction called \$n\$-times unlinkable proofs. We show the full cryptographic description of the scheme, prove its security, discuss parameters influencing scalability and provide details on implementation aspects. As a side result of independent interest, we design a more efficient proof of knowledge of weak Boneh-Boyen signatures, that does not require any pairing computation on the prover side.