Visible to the public Biblio

Filters: Author is Oprea, Alina  [Clear All Filters]
2023-06-22
Ho, Samson, Reddy, Achyut, Venkatesan, Sridhar, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina.  2022.  Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :993–998.
Machine learning (ML) models are increasingly being used in the development of Malware Detection Systems. Existing research in this area primarily focuses on developing new architectures and feature representation techniques to improve the accuracy of the model. However, recent studies have shown that existing state-of-the art techniques are vulnerable to adversarial machine learning (AML) attacks. Among those, data poisoning attacks have been identified as a top concern for ML practitioners. A recent study on clean-label poisoning attacks in which an adversary intentionally crafts training samples in order for the model to learn a backdoor watermark was shown to degrade the performance of state-of-the-art classifiers. Defenses against such poisoning attacks have been largely under-explored. We investigate a recently proposed clean-label poisoning attack and leverage an ensemble-based Nested Training technique to remove most of the poisoned samples from a poisoned training dataset. Our technique leverages the relatively large sensitivity of poisoned samples to feature noise that disproportionately affects the accuracy of a backdoored model. In particular, we show that for two state-of-the art architectures trained on the EMBER dataset affected by the clean-label attack, the Nested Training approach improves the accuracy of backdoor malware samples from 3.42% to 93.2%. We also show that samples produced by the clean-label attack often successfully evade malware classification even when the classifier is not poisoned during training. However, even in such scenarios, our Nested Training technique can mitigate the effect of such clean-label-based evasion attacks by recovering the model's accuracy of malware detection from 3.57% to 93.2%.
ISSN: 2155-7586
2023-02-02
Oakley, Lisa, Oprea, Alina, Tripakis, Stavros.  2022.  Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems. 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :380–395.

Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. However, these methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of some system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.

2022-04-12
Venkatesan, Sridhar, Sikka, Harshvardhan, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina, de Lucia, Michael J..  2021.  Poisoning Attacks and Data Sanitization Mitigations for Machine Learning Models in Network Intrusion Detection Systems. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :874—879.
Among many application domains of machine learning in real-world settings, cyber security can benefit from more automated techniques to combat sophisticated adversaries. Modern network intrusion detection systems leverage machine learning models on network logs to proactively detect cyber attacks. However, the risk of adversarial attacks against machine learning used in these cyber settings is not fully explored. In this paper, we investigate poisoning attacks at training time against machine learning models in constrained cyber environments such as network intrusion detection; we also explore mitigations of such attacks based on training data sanitization. We consider the setting of poisoning availability attacks, in which an attacker can insert a set of poisoned samples at training time with the goal of degrading the accuracy of the deployed model. We design a white-box, realizable poisoning attack that reduced the original model accuracy from 95% to less than 50 % by generating mislabeled samples in close vicinity of a selected subset of training points. We also propose a novel Nested Training method as a defense against these attacks. Our defense includes a diversified ensemble of classifiers, each trained on a different subset of the training set. We use the disagreement of the classifiers' predictions as a data sanitization method, and show that an ensemble of 10 SVM classifiers is resilient to a large fraction of poisoning samples, up to 30% of the training data.
2018-07-06
Liu, Chang, Li, Bo, Vorobeychik, Yevgeniy, Oprea, Alina.  2017.  Robust Linear Regression Against Training Data Poisoning. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :91–102.
The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of training data, which we term poisoning attacks. Prior approaches to dealing with robust supervised learning rely on strong assumptions about the nature of the feature matrix, such as feature independence and sub-Gaussian noise with low variance. We propose an integrated method for robust regression that relaxes these assumptions, assuming only that the feature matrix can be well approximated by a low-rank matrix. Our techniques integrate improved robust low-rank matrix approximation and robust principle component regression, and yield strong performance guarantees. Moreover, we experimentally show that our methods significantly outperform state of the art both in running time and prediction error.
2017-05-22
Alrwais, Sumayah, Yuan, Kan, Alowaisheq, Eihal, Liao, Xiaojing, Oprea, Alina, Wang, XiaoFeng, Li, Zhou.  2016.  Catching Predators at Watering Holes: Finding and Understanding Strategically Compromised Websites. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :153–166.

Unlike a random, run-of-the-mill website infection, in a strategic web attack, the adversary carefully chooses the target frequently visited by an organization or a group of individuals to compromise, for the purpose of gaining a step closer to the organization or collecting information from the group. This type of attacks, called "watering hole", have been increasingly utilized by APT actors to get into the internal networks of big companies and government agencies or monitor politically oriented groups. With its importance, little has been done so far to understand how the attack works, not to mention any concrete step to counter this threat. In this paper, we report our first step toward better understanding this emerging threat, through systematically discovering and analyzing new watering hole instances and attack campaigns. This was made possible by a carefully designed methodology, which repeatedly monitors a large number potential watering hole targets to detect unusual changes that could be indicative of strategic compromises. Running this system on the HTTP traffic generated from visits to 61K websites for over 5 years, we are able to discover and confirm 17 watering holes and 6 campaigns never reported before. Given so far there are merely 29 watering holes reported by blogs and technical reports, the findings we made contribute to the research on this attack vector, by adding 59% more attack instances and information about how they work to the public knowledge. Analyzing the new watering holes allows us to gain deeper understanding of these attacks, such as repeated compromises of political websites, their long lifetimes, unique evasion strategy (leveraging other compromised sites to serve attack payloads) and new exploit techniques (no malware delivery, web only information gathering). Also, our study brings to light interesting new observations, including the discovery of a recent JSONP attack on an NGO website that has been widely reported and apparently forced the attack to stop.