Visible to the public Biblio

Filters: Author is Roth, Volker  [Clear All Filters]
2017-10-19
Lau, Stephan, Klick, Johannes, Arndt, Stephan, Roth, Volker.  2016.  POSTER: Towards Highly Interactive Honeypots for Industrial Control Systems. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1823–1825.
Honeypots are a common tool to set intrusion alarms and to study attacks against computer systems. In order to be convincing, honeypots attempt to resemble actual systems that are in active use. Recently, researchers have begun to develop honeypots for programmable logic controllers (PLCs). The tools of which we are aware have limited functionality compared to genuine devices. Particularly, they do not support running actual PLC programs. In order to improve upon the interactive capabilities of PLC honeypots we set out to develop a simulator for Siemens S7-300 series PLCs. Our current prototype XPOT supports PLC program compilation and interpretation, the proprietary S7comm protocol and SNMP. While the supported feature set is not yet comprehensive, it is possible to program it using standard IDEs such as Siemens' TIA portal. Additionally, we emulate the characteristics of the network stack of our reference PLC in order to resist OS fingerprinting attempts using tools such as Nmap. Initial experiments with students whom we trained in PLC programming indicate that XPOT may resist cursory inspection but still fails against knowledgeable and suspicious adversaries. We conclude that high-interactive PLC honeypots need to support a fairly complete feature set of the genuine, simulated PLC.
2017-09-27
Malchow, Jan-Ole, Güldenring, Benjamin, Roth, Volker.  2016.  POSTER: Re-Thinking Risks and Rewards for Trusted Third Parties. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1796–1798.
Commercial trusted third parties (TTPs) may increase their bottom line by watering down their validation procedures because they assume no liability for lapses of judgement. Consumers bear the risk of misplaced trust. Reputation loss is a weak deterrent for TTPs because consumers do not choose them - web shops and browser vendors do. At the same time, consumers are the source of income of these parties. Hence, risks and rewards are not well-aligned. Towards a better alignment, we explore the brokering of connection insurances and transaction insurances, where consumers get to choose their insurer. We lay out the principal idea how such a brokerage might work at a technical level with minimal interference with existing protocols and mechanisms, we analyze the security requirements and we propose techniques to meet these requirements.
2017-05-30
Wiese, Oliver, Roth, Volker.  2016.  See You Next Time: A Model for Modern Shoulder Surfers. Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services. :453–464.

Friends, family and colleagues at work may repeatedly observe how their peers unlock their smartphones. These "insiders" may combine multiple partial observations to form a hypothesis of a target's secret. This changing landscape requires that we update the methods used to assess the security of unlocking mechanisms against human shoulder surfing attacks. In our paper, we introduce a methodology to study shoulder surfing risks in the insider threat model. Our methodology dissects the authentication process into minimal observations by humans. Further processing is based on simulations. The outcome is an estimate of the number of observations needed to break a mechanism. The flexibility of this approach benefits the design of new mechanisms. We demonstrate the application of our methodology by performing an analysis of the SwiPIN scheme published at CHI 2015. Our results indicate that SwiPIN can be defeated reliably by a majority of the population with as few as 6 to 11 observations.