Biblio
Oblivious linear-function evaluation (OLE) is a secure two-party protocol allowing a receiver to learn any linear combination of a pair of field elements held by a sender. OLE serves as a common building block for secure computation of arithmetic circuits, analogously to the role of oblivious transfer (OT) for boolean circuits. A useful extension of OLE is vector OLE (VOLE), allowing the receiver to learn any linear combination of two vectors held by the sender. In several applications of OLE, one can replace a large number of instances of OLE by a smaller number of instances of VOLE. This motivates the goal of amortizing the cost of generating long instances of VOLE. We suggest a new approach for fast generation of pseudo-random instances of VOLE via a deterministic local expansion of a pair of short correlated seeds and no interaction. This provides the first example of compressing a non-trivial and cryptographically useful correlation with good concrete efficiency. Our VOLE generators can be used to enhance the efficiency of a host of cryptographic applications. These include secure arithmetic computation and non-interactive zero-knowledge proofs with reusable preprocessing. Our VOLE generators are based on a novel combination of function secret sharing (FSS) for multi-point functions and linear codes in which decoding is intractable. Their security can be based on variants of the learning parity with noise (LPN) assumption over large fields that resist known attacks. We provide several constructions that offer tradeoffs between different efficiency measures and the underlying intractability assumptions.
We continue the study of Homomorphic Secret Sharing (HSS), recently introduced by Boyle et al. (Crypto 2016, Eurocrypt 2017). A (2-party) HSS scheme splits an input x into shares (x0,x1) such that (1) each share computationally hides x, and (2) there exists an efficient homomorphic evaluation algorithm \$\textbackslashEval\$ such that for any function (or "program") from a given class it holds that Eval(x0,P)+Eval(x1,P)=P(x). Boyle et al. show how to construct an HSS scheme for branching programs, with an inverse polynomial error, using discrete-log type assumptions such as DDH. We make two types of contributions. Optimizations. We introduce new optimizations that speed up the previous optimized implementation of Boyle et al. by more than a factor of 30, significantly reduce the share size, and reduce the rate of leakage induced by selective failure. Applications. Our optimizations are motivated by the observation that there are natural application scenarios in which HSS is useful even when applied to simple computations on short inputs. We demonstrate the practical feasibility of our HSS implementation in the context of such applications.
Function Secret Sharing (FSS), introduced by Boyle et al. (Eurocrypt 2015), provides a way for additively secret-sharing a function from a given function family F. More concretely, an m-party FSS scheme splits a function f : \0, 1\n -textgreater G, for some abelian group G, into functions f1,...,fm, described by keys k1,...,km, such that f = f1 + ... + fm and every strict subset of the keys hides f. A Distributed Point Function (DPF) is a special case where F is the family of point functions, namely functions f\_\a,b\ that evaluate to b on the input a and to 0 on all other inputs. FSS schemes are useful for applications that involve privately reading from or writing to distributed databases while minimizing the amount of communication. These include different flavors of private information retrieval (PIR), as well as a recent application of DPF for large-scale anonymous messaging. We improve and extend previous results in several ways: * Simplified FSS constructions. We introduce a tensoring operation for FSS which is used to obtain a conceptually simpler derivation of previous constructions and present our new constructions. * Improved 2-party DPF. We reduce the key size of the PRG-based DPF scheme of Boyle et al. roughly by a factor of 4 and optimize its computational cost. The optimized DPF significantly improves the concrete costs of 2-server PIR and related primitives. * FSS for new function families. We present an efficient PRG-based 2-party FSS scheme for the family of decision trees, leaking only the topology of the tree and the internal node labels. We apply this towards FSS for multi-dimensional intervals. We also present a general technique for extending FSS schemes by increasing the number of parties. * Verifiable FSS. We present efficient protocols for verifying that keys (k*/1,...,k*/m ), obtained from a potentially malicious user, are consistent with some f in F. Such a verification may be critical for applications that involve private writing or voting by many users.