Visible to the public Biblio

Filters: Author is Barenghi, Alessandro  [Clear All Filters]
2017-10-13
Agosta, Giovanni, Barenghi, Alessandro, Pelosi, Gerardo, Scandale, Michele.  2016.  Encasing Block Ciphers to Foil Key Recovery Attempts via Side Channel. Proceedings of the 35th International Conference on Computer-Aided Design. :96:1–96:8.

Providing efficient protection against energy consumption based side channel attacks (SCAs) for block ciphers is a relevant topic for the research community, as current overheads are in the 100x range. Unprofiled SCAs exploit information leakage from the outmost rounds of a cipher; we propose a solution encasing it between keyed transformations amenable to an efficient SCA protection. Our solution can be employed as a drop in replacement for an unprotected implementation, or be retrofit to an existing one, while retaining communication capabilities with legacy insecure endpoints. Experiments on a Cortex-M4 μC, show performance improvements in the range of 60x, compared with available solutions.

Agosta, Giovanni, Barenghi, Alessandro, Pelosi, Gerardo.  2016.  Automated Instantiation of Side-channel Attacks Countermeasures for Software Cipher Implementations. Proceedings of the ACM International Conference on Computing Frontiers. :455–460.

Side Channel Attacks (SCA) have proven to be a practical threat to the security of embedded systems, exploiting the information leakage coming from unintended channels concerning an implementation of a cryptographic primitive. Given the large variety of embedded platforms, and the ubiquity of the need for secure cryptographic implementations, a systematic and automated approach to deploy SCA countermeasures at design time is strongly needed. In this paper, we provide an overview of recent compiler-based techniques to protect software implementations against SCA, making them amenable to automated application in the development of secure-by-design systems.

2017-05-30
Continella, Andrea, Guagnelli, Alessandro, Zingaro, Giovanni, De Pasquale, Giulio, Barenghi, Alessandro, Zanero, Stefano, Maggi, Federico.  2016.  ShieldFS: A Self-healing, Ransomware-aware Filesystem. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :336–347.

Preventive and reactive security measures can only partially mitigate the damage caused by modern ransomware attacks. Indeed, the remarkable amount of illicit profit and the cyber-criminals' increasing interest in ransomware schemes suggest that a fair number of users are actually paying the ransoms. Unfortunately, pure-detection approaches (e.g., based on analysis sandboxes or pipelines) are not sufficient nowadays, because often we do not have the luxury of being able to isolate a sample to analyze, and when this happens it is already too late for several users! We believe that a forward-looking solution is to equip modern operating systems with practical self-healing capabilities against this serious threat. Towards such a vision, we propose ShieldFS, an add-on driver that makes the Windows native filesystem immune to ransomware attacks. For each running process, ShieldFS dynamically toggles a protection layer that acts as a copy-on-write mechanism, according to the outcome of its detection component. Internally, ShieldFS monitors the low-level filesystem activity to update a set of adaptive models that profile the system activity over time. Whenever one or more processes violate these models, their operations are deemed malicious and the side effects on the filesystem are transparently rolled back. We designed ShieldFS after an analysis of billions of low-level, I/O filesystem requests generated by thousands of benign applications, which we collected from clean machines in use by real users for about one month. This is the first measurement on the filesystem activity of a large set of benign applications in real working conditions. We evaluated ShieldFS in real-world working conditions on real, personal machines, against samples from state of the art ransomware families. ShieldFS was able to detect the malicious activity at runtime and transparently recover all the original files. Although the models can be tuned to fit various filesystem usage profiles, our results show that our initial tuning yields high accuracy even on unseen samples and variants.