Visible to the public Biblio

Filters: Author is Yang, Jie  [Clear All Filters]
2023-05-19
Guo, Yihao, Guo, Chuangxin, Yang, Jie.  2022.  A Resource Allocation Method for Attacks on Power Systems Under Extreme Weather. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :165—169.
This paper addresses the allocation method of offensive resources for man-made attacks on power systems considering extreme weather conditions, which can help the defender identify the most vulnerable components to protect in this adverse situation. The problem is formulated as an attacker-defender model. The attacker at the upper level intends to maximize the expected damage considering all possible line failure scenarios. These scenarios are characterized by the combinations of failed transmission lines under extreme weather. Once the disruption is detected, the defender at the lower level alters the generation and consumption in the power grid using DC optimal power flow technique to minimize the damage. Then the original bi-level problem is transformed into an equivalent single-level mixed-integer linear program through strong duality theorem and Big-M method. The proposed attack resource allocation method is applied on IEEE 39-bus system and its effectiveness is demonstrated by the comparative case studies.
2022-12-09
Zeng, Ranran, Lin, Yue, Li, Xiaoyu, Wang, Lei, Yang, Jie, Zhao, Dexin, Su, Minglan.  2022.  Research on the Implementation of Real-Time Intelligent Detection for Illegal Messages Based on Artificial Intelligence Technology. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :278—284.
In recent years, the detection of illegal and harmful messages which plays an significant role in Internet service is highly valued by the government and society. Although artificial intelligence technology is increasingly applied to actual operating systems, it is still a big challenge to be applied to systems that require high real-time performance. This paper provides a real-time detection system solution based on artificial intelligence technology. We first introduce the background of real-time detection of illegal and harmful messages. Second, we propose a complete set of intelligent detection system schemes for real-time detection, and conduct technical exploration and innovation in the media classification process including detection model optimization, traffic monitoring and automatic configuration algorithm. Finally, we carry out corresponding performance verification.
2021-11-29
Gao, Hongjun, Liu, Youbo, Liu, Zhenyu, Xu, Song, Wang, Renjun, Xiang, Enmin, Yang, Jie, Qi, Mohan, Zhao, Yinbo, Pan, Hongjin et al..  2020.  Optimal Planning of Distribution Network Based on K-Means Clustering. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :2135–2139.
The reform of electricity marketization has bred multiple market agents. In order to maximize the total social benefits on the premise of ensuring the security of the system and taking into account the interests of multiple market agents, a bi-level optimal allocation model of distribution network with multiple agents participating is proposed. The upper level model considers the economic benefits of energy and service providers, which are mainly distributed power investors, energy storage operators and distribution companies. The lower level model considers end-user side economy and actively responds to demand management to ensure the highest user satisfaction. The K-means multi scenario analysis method is used to describe the time series characteristics of wind power, photovoltaic power and load. The particle swarm optimization (PSO) algorithm is used to solve the bi-level model, and IEEE33 node system is used to verify that the model can effectively consider the interests of multiple agents while ensuring the security of the system.
2017-06-05
Qi, Ling, Qiao, Yuanyuan, Abdesslem, Fehmi Ben, Ma, Zhanyu, Yang, Jie.  2016.  Oscillation Resolution for Massive Cell Phone Traffic Data. Proceedings of the First Workshop on Mobile Data. :25–30.

Cellular towers capture logs of mobile subscribers whenever their devices connect to the network. When the logs show data traffic at a cell tower generated by a device, it reveals that this device is close to the tower. The logs can then be used to trace the locations of mobile subscribers for different applications, such as studying customer behaviour, improving location-based services, or helping urban planning. However, the logs often suffer from an oscillation phenomenon. Oscillations may happen when a device, even when not moving, does not only connect to the nearest cell tower, but is instead unpredictably switching between multiple cell towers because of random noise, load balancing, or simply dynamic changes in signal strength. Detecting and removing oscillations are a challenge when analyzing location data collected from the cellular network. In this paper, we propose an algorithm called SOL (Stable, Oscillation, Leap periods) aimed at discovering and reducing oscillations in the collected logs. We apply our algorithm on real datasets which contain about 18.9\textasciitildeTB of traffic logs generated by more than 3\textasciitildemillion mobile subscribers covering about 21000 cell towers and collected during 27\textasciitildedays from both GSM and UMTS networks in northern China. Experimental results demonstrate the ability and effectiveness of SOL to reduce oscillations in cellular network logs.