Visible to the public Biblio

Filters: Author is Ou, Lu  [Clear All Filters]
2020-05-22
Song, Fuyuan, Qin, Zheng, Liu, Qin, Liang, Jinwen, Ou, Lu.  2019.  Efficient and Secure k-Nearest Neighbor Search Over Encrypted Data in Public Cloud. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
Cloud computing has become an important and popular infrastructure for data storage and sharing. Typically, data owners outsource their massive data to a public cloud that will provide search services to authorized data users. With privacy concerns, the valuable outsourced data cannot be exposed directly, and should be encrypted before outsourcing to the public cloud. In this paper, we focus on k-Nearest Neighbor (k-NN) search over encrypted data. We propose efficient and secure k-NN search schemes based on matrix similarity to achieve efficient and secure query services in public cloud. In our basic scheme, we construct the traces of two diagonal multiplication matrices to denote the Euclidean distance of two data points, and perform secure k-NN search by comparing traces of corresponding similar matrices. In our enhanced scheme, we strengthen the security property by decomposing matrices based on our basic scheme. Security analysis shows that our schemes protect the data privacy and query privacy under attacking with different levels of background knowledge. Experimental evaluations show that both schemes are efficient in terms of computation complexity as well as computational cost.
2017-06-05
Li, Wenjie, Qin, Zheng, Yin, Hui, Li, Rui, Ou, Lu, Li, Heng.  2016.  An Approach to Rule Placement in Software-Defined Networks. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :115–118.

Software-Defined Networks (SDN) is a trend of research in networks. Rule placement, a common operation for network administrators, has become more complicated due to the capacity limitation of devices in which the large number of rules are deployed. Prior works on rule placement mostly consider the influence on rule placement incurred by the rules in a single device. However, the position relationships between neighbor devices have influences on rule placement. Our basic idea is to classify the position relationships into two categories: the serial relationship and the parallel relationship, and we present a novel strategy for rule placement based on the two different position relationships. There are two challenges of implementing our strategies: to check whether a rule is contained by a rule set or not and to check whether a rule can be merged by other rules or not.To overcome the challenges, we propose a novel data structure called OPTree to represent the rules, which is convenient to check whether a rule is covered by other rules. We design the insertion algorithm and search algorithm for OPTree. Extensive experiments show that our approach can effectively reduce the number of rules while ensuring placed rules work. On the other hand, the experimental results also demonstrate that it is necessary to consider the position relationships between neighbor devices when placing rules.