Biblio
Software-Defined Networking (SDN) represents a major shift from ossified hardware-based networks to programmable software-based networks. It introduces significant granularity, visibility, and flexibility into networking, but at the same time brings new security challenges. Although the research community is making progress in addressing both the opportunities in SDN and the accompanying security challenges, very few educational materials have been designed to incorporate the latest research results and engage students in learning about SDN security. In this paper, we presents our newly designed SDN security education materials, which can be used to meet the ever-increasing demand for high quality cybersecurity professionals with expertise in SDN security. The designed security education materials incorporate the latest research results in SDN security and are integrated into CloudLab, an open cloud platform, for effective hands-on learning. Through a user study, we demonstrate that students have a better understanding of SDN security after participating in these well-designed CloudLab-based security labs, and they also acquired strong research interests in SDN security.
Traditional Intrusion Detection Systems (IDSes) are generally implemented on vendor proprietary appliances or middleboxes, which usually lack a general programming interface, and their versatility and flexibility are also very poor. Emerging Network Function Virtualization (NFV) technology can virtualize IDSes and elastically scale them to deal with attack traffic variations. However, existing NFV solutions treat a virtualized IDS as a monolithic piece of software, which could lead to inflexibility and significant waste of resources. In this paper, we propose a novel approach to virtualize IDSes as microservices where the virtualized IDSes can be customized on demand, and the underlying microservices could be shared and scaled independently. We also conduct experiments, which demonstrate that virtualizing IDSes as microservices can gain greater flexibility and resource efficiency.
Recent findings have shown that network and system attacks in Software-Defined Networks (SDNs) have been caused by malicious network applications that misuse APIs in an SDN controller. Such attacks can both crash the controller and change the internal data structure in the controller, causing serious damage to the infrastructure of SDN-based networks. To address this critical security issue, we introduce a security framework called AEGIS to prevent controller APIs from being misused by malicious network applications. Through the run-time verification of API calls, AEGIS performs a fine-grained access control for important controller APIs that can be misused by malicious applications. The usage of API calls is verified in real time by sophisticated security access rules that are defined based on the relationships between applications and data in the SDN controller. We also present a prototypical implementation of AEGIS and demonstrate its effectiveness and efficiency by performing six different controller attacks including new attacks we have recently discovered.