Visible to the public Biblio

Filters: Author is Kant, K.  [Clear All Filters]
2020-11-23
Jolfaei, A., Kant, K., Shafei, H..  2019.  Secure Data Streaming to Untrusted Road Side Units in Intelligent Transportation System. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :793–798.
The paper considers data security issues in vehicle-to-infrastructure communications, where vehicles stream data to a road side unit. We assume aggregated data in road side units can be stored or used for data analytics. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicle layer, where a group leader is assigned to communicate with group devices and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality of sensory data.
2018-06-07
Alazzawe, A., Kant, K..  2017.  Slice Swarms for HPC Application Resilience. 2017 Fifth International Symposium on Computing and Networking (CANDAR). :1–10.

Resilience in High Performance Computing (HPC) is a constraining factor for bringing applications to the upcoming exascale systems. Resilience techniques must be able to scale to handle the increasing number of expected errors in an energy efficient manner. Since the purpose of running applications on HPC systems is to perform large scale computations as quick as possible, resilience methods should not add a large delay to the time to completion of the application. In this paper we introduce a novel technique to detect and recover from transient errors in HPC applications. One of the features of our technique is that the energy budget allocated to resilience can be adjusted depending on the operator's resilience needs. For example, on synthetic data, the technique can detect about 50% of transient errors while only using 20% of the dynamic energy required for running the application. For a 60% energy budget, an application that uses 10k cores and takes 128 hours to run, will only require 10% longer to complete.

2015-04-30
Vamsi, P.R., Kant, K..  2014.  Sybil attack detection using Sequential Hypothesis Testing in Wireless Sensor Networks. Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on. :698-702.

Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.

Vamsi, P.R., Kant, K..  2014.  Sybil attack detection using Sequential Hypothesis Testing in Wireless Sensor Networks. Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on. :698-702.

Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.