Visible to the public Biblio

Filters: Author is Du, Chaohui  [Clear All Filters]
2017-07-24
Du, Chaohui, Bai, Guoqiang, Wu, Xingjun.  2016.  High-Speed Polynomial Multiplier Architecture for Ring-LWE Based Public Key Cryptosystems. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :9–14.

Many lattice-based cryptosystems are based on the security of the Ring learning with errors (Ring-LWE) problem. The most critical and computationally intensive operation of these Ring-LWE based cryptosystems is polynomial multiplication. In this paper, we exploit the number theoretic transform to build a high-speed polynomial multiplier for the Ring-LWE based public key cryptosystems. We present a versatile pipelined polynomial multiplication architecture to calculate the product of two \$n\$-degree polynomials in about ((nlg n)/4 + n/2) clock cycles. In addition, we introduce several optimization techniques to reduce the required ROM storage. The experimental results on a Spartan-6 FPGA show that the proposed hardware architecture can achieve a speedup of on average 2.25 than the state of the art of high-speed design. Meanwhile, our design is able to save up to 47.06% memory blocks.