Biblio
Signed social networks have become increasingly important in recent years because of the ability to model trust-based relationships in review sites like Slashdot, Epinions, and Wikipedia. As a result, many traditional network mining problems have been re-visited in the context of networks in which signs are associated with the links. Examples of such problems include community detection, link prediction, and low rank approximation. In this paper, we will examine the problem of ranking nodes in signed networks. In particular, we will design a ranking model, which has a clear physical interpretation in terms of the sign of the edges in the network. Specifically, we propose the Troll-Trust model that models the probability of trustworthiness of individual data sources as an interpretation for the underlying ranking values. We will show the advantages of this approach over a variety of baselines.