Biblio
This paper proposes an audio watermarking algorithm having good balance between perceptual transparency, robustness, and payload. The proposed algorithm is based on Cordic QR decomposition and multi-resolution decomposition meeting all the necessary audio watermarking design requirements. The use of Cordic QR decomposition provides good robustness and use of detailed coefficients of multi-resolution decomposition help to obtain good transparency at high payload. Also, the proposed algorithm does not require original signal or the embedded watermark for extraction. The binary data embedding capacity of the proposed algorithm is 960.4 bps and the highest SNR obtained is 35.1380 dB. The results obtained in this paper show that the proposed method has good perceptual transparency, high payload and robustness under various audio signal processing attacks.
Software Defined Internet Exchange Points (SDXes) increase the flexibility of interdomain traffic delivery on the Internet. Yet, an SDX inherently requires multiple participants to have access to a single, shared physical switch, which creates the need for an authorization mechanism to mediate this access. In this paper, we introduce a logic and mechanism called FLANC (A Formal Logic for Authorizing Network Control), which authorizes each participant to control forwarding actions on a shared switch and also allows participants to delegate forwarding actions to other participants at the switch (e.g., a trusted third party). FLANC extends "says" and "speaks for" logic that have been previously designed for operating system objects to handle expressions involving network traffic flows. We describe FLANC, explain how participants can use it to express authorization policies for realistic interdomain routing settings, and demonstrate that it is efficient enough to operate in operational settings.