Biblio
The reconfiguration of FPGAs includes downloading the bit-stream file which contains the new design on the FPGA. The option to reconfigure FPGAs dynamically opens up the threat of stealing the Intellectual Property (IP) of the design. Since the configuration is usually stored in external memory, this can be easily tapped and read out by an eaves-dropper. This work presents a low cost solution in order to secure the reconfiguration of FPGAs. The proposed solution is based on an efficient-compact hardware implementation for AEGIS which is considered one of the candidates to the competition of CAESAR. The proposed architecture depends on using 1/4 AES-round for reducing the consumed area. We evaluated the presented design using 90 and 65 nm technologies. Our comparison to existing AES-based schemes reveals that the proposed design is better in terms of the hardware performance (Thr./mm2).