Visible to the public Biblio

Filters: Author is Koo, Dongyoung  [Clear All Filters]
2018-01-16
Shin, Youngjoo, Koo, Dongyoung, Hur, Junbeom.  2017.  A Survey of Secure Data Deduplication Schemes for Cloud Storage Systems. ACM Comput. Surv.. 49:74:1–74:38.

Data deduplication has attracted many cloud service providers (CSPs) as a way to reduce storage costs. Even though the general deduplication approach has been increasingly accepted, it comes with many security and privacy problems due to the outsourced data delivery models of cloud storage. To deal with specific security and privacy issues, secure deduplication techniques have been proposed for cloud data, leading to a diverse range of solutions and trade-offs. Hence, in this article, we discuss ongoing research on secure deduplication for cloud data in consideration of the attack scenarios exploited most widely in cloud storage. On the basis of classification of deduplication system, we explore security risks and attack scenarios from both inside and outside adversaries. We then describe state-of-the-art secure deduplication techniques for each approach that deal with different security issues under specific or combined threat models, which include both cryptographic and protocol solutions. We discuss and compare each scheme in terms of security and efficiency specific to different security goals. Finally, we identify and discuss unresolved issues and further research challenges for secure deduplication in cloud storage.

2017-08-18
Kim, Sungwook, Kim, Jinsu, Koo, Dongyoung, Kim, Yuna, Yoon, Hyunsoo, Shin, Junbum.  2016.  Efficient Privacy-Preserving Matrix Factorization via Fully Homomorphic Encryption: Extended Abstract. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :617–628.

Recommendation systems become popular in our daily life. It is well known that the more the release of users' personal data, the better the quality of recommendation. However, such services raise serious privacy concerns for users. In this paper, focusing on matrix factorization-based recommendation systems, we propose the first privacy-preserving matrix factorization using fully homomorphic encryption. On inputs of encrypted users' ratings, our protocol performs matrix factorization over the encrypted data and returns encrypted outputs so that the recommendation system knows nothing on rating values and resulting user/item profiles. It provides a way to obfuscate the number and list of items a user rated without harming the accuracy of recommendation, and additionally protects recommender's tuning parameters for business benefit and allows the recommender to optimize the parameters for quality of service. To overcome performance degradation caused by the use of fully homomorphic encryption, we introduce a novel data structure to perform computations over encrypted vectors, which are essential operations for matrix factorization, through secure 2-party computation in part. With the data structure, the proposed protocol requires dozens of times less computation cost over those of previous works. Our experiments on a personal computer with 3.4 GHz 6-cores 64 GB RAM show that the proposed protocol runs in 1.5 minutes per iteration. It is more efficient than Nikolaenko et al.'s work proposed in CCS 2013, in which it took about 170 minutes on two servers with 1.9 GHz 16-cores 128 GB RAM.