Biblio
Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.
Massive and dynamic networks arise in many practical applications such as social media, security and public health. Given an evolutionary network, it is crucial to detect structural anomalies, such as vertices and edges whose "behaviors'' deviate from underlying majority of the network, in a real-time fashion. Recently, network embedding has proven a powerful tool in learning the low-dimensional representations of vertices in networks that can capture and preserve the network structure. However, most existing network embedding approaches are designed for static networks, and thus may not be perfectly suited for a dynamic environment in which the network representation has to be constantly updated. In this paper, we propose a novel approach, NetWalk, for anomaly detection in dynamic networks by learning network representations which can be updated dynamically as the network evolves. We first encode the vertices of the dynamic network to vector representations by clique embedding, which jointly minimizes the pairwise distance of vertex representations of each walk derived from the dynamic networks, and the deep autoencoder reconstruction error serving as a global regularization. The vector representations can be computed with constant space requirements using reservoir sampling. On the basis of the learned low-dimensional vertex representations, a clustering-based technique is employed to incrementally and dynamically detect network anomalies. Compared with existing approaches, NetWalk has several advantages: 1) the network embedding can be updated dynamically, 2) streaming network nodes and edges can be encoded efficiently with constant memory space usage, 3) flexible to be applied on different types of networks, and 4) network anomalies can be detected in real-time. Extensive experiments on four real datasets demonstrate the effectiveness of NetWalk.
In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.
Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detecting system anomalies thus attracts significant amount of interest in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be a powerful way in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of vanishing correlations are not exploited for robust detection. To address these limitations, in this paper we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network, and can perform joint inference on both the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise in the system. Extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our approach.
Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detecting system anomalies thus attracts significant amount of interest in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be a powerful way in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of vanishing correlations are not exploited for robust detection. To address these limitations, in this paper we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network, and can perform joint inference on both the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise in the system. Extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our approach.
In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.