Visible to the public Biblio

Filters: Author is Mohammed, Noman  [Clear All Filters]
2022-02-10
Rahman Mahdi, Md Safiur, Sadat, Md Nazmus, Mohammed, Noman, Jiang, Xiaoqian.  2020.  Secure Count Query on Encrypted Heterogeneous Data. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :548–555.
Cost-effective and efficient sequencing technologies have resulted in massive genomic data availability. To compute on a large-scale genomic dataset, it is often required to outsource the dataset to the cloud. To protect data confidentiality, data owners encrypt sensitive data before outsourcing. Outsourcing enhances data owners to eliminate the storage management problem. Since genome data is large in volume, secure execution of researchers query is challenging. In this paper, we propose a method to securely perform count query on datasets containing genotype, phenotype, and numeric data. Our method modifies the prefix-tree proposed by Hasan et al. [1] to incorporate numerical data. The proposed method guarantees data privacy, output privacy, and query privacy. We preserve the security through encryption and garbled circuits. For a query of 100 single-nucleotide polymorphism (SNPs) sequence, we achieve query execution time approximately 3.5 minutes in a database of 1500 records. To the best of our knowledge, this is the first proposed secure framework that addresses heterogeneous biomedical data including numeric attributes.
2020-09-04
Glory, Farhana Zaman, Ul Aftab, Atif, Tremblay-Savard, Olivier, Mohammed, Noman.  2019.  Strong Password Generation Based On User Inputs. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0416—0423.
Every person using different online services is concerned with the security and privacy for protecting individual information from the intruders. Many authentication systems are available for the protection of individuals' data, and the password authentication system is one of them. Due to the increment of information sharing, internet popularization, electronic commerce transactions, and data transferring, both password security and authenticity have become an essential and necessary subject. But it is also mandatory to ensure the strength of the password. For that reason, all cyber experts recommend intricate password patterns. But most of the time, the users forget their passwords because of those complicated patterns. In this paper, we are proposing a unique algorithm that will generate a strong password, unlike other existing random password generators. This password will he based on the information, i.e. (some words and numbers) provided by the users so that they do not feel challenged to remember the password. We have tested our system through various experiments using synthetic input data. We also have checked our generator with four popular online password checkers to verify the strength of the produced passwords. Based on our experiments, the reliability of our generated passwords is entirely satisfactory. We also have examined that our generated passwords can defend against two password cracking attacks named the "Dictionary attack" and the "Brute Force attack". We have implemented our system in Python programming language. In the near future, we have a plan to extend our work by developing an online free to use user interface. The passwords generated by our system are not only user-friendly but also have achieved most of the qualities of being strong as well as non- crackable passwords.
2017-08-18
Al Aziz, Md Momin, Hasan, Mohammad Z., Mohammed, Noman, Alhadidi, Dima.  2016.  Secure and Efficient Multiparty Computation on Genomic Data. Proceedings of the 20th International Database Engineering & Applications Symposium. :278–283.

Large scale biomedical research projects involve analysis of huge amount of genomic data which is owned by different data owners. The collection and storing of genomic data is sometimes beyond the capability of a sole organization. Genomic data sharing is a feasible solution to overcome this problem. These scenarios can be generalized into the problem of aggregating data distributed among multiple databases and owned by different data owners. However, we should guarantee that an adversary cannot learn anything about the data or the individual contribution of each party towards the final output of the computation. In this paper, we propose a practical solution for secure sharing and computation of genomic data. We adopt the Paillier cryptosystem and the order preserving encryption to securely execute the count query and the ranked query. Experimental results demonstrate that the computation time is realistic enough to make our system adoptable in the real world.