Biblio
The semantics of online authentication in the web are rather straightforward: if Alice has a certificate binding Bob's name to a public key, and if a remote entity can prove knowledge of Bob's private key, then (barring key compromise) that remote entity must be Bob. However, in reality, many websites' and the majority of the most popular ones-are hosted at least in part by third parties such as Content Delivery Networks (CDNs) or web hosting providers. Put simply: administrators of websites who deal with (extremely) sensitive user data are giving their private keys to third parties. Importantly, this sharing of keys is undetectable by most users, and widely unknown even among researchers. In this paper, we perform a large-scale measurement study of key sharing in today's web. We analyze the prevalence with which websites trust third-party hosting providers with their secret keys, as well as the impact that this trust has on responsible key management practices, such as revocation. Our results reveal that key sharing is extremely common, with a small handful of hosting providers having keys from the majority of the most popular websites. We also find that hosting providers often manage their customers' keys, and that they tend to react more slowly yet more thoroughly to compromised or potentially compromised keys.
SSL and TLS are used to secure the most commonly used Internet protocols. As a result, the ecosystem of SSL certificates has been thoroughly studied, leading to a broad understanding of the strengths and weaknesses of the certificates accepted by most web browsers. Prior work has naturally focused almost exclusively on "valid" certificates–those that standard browsers accept as well-formed and trusted–and has largely disregarded certificates that are otherwise "invalid." Surprisingly, however, this leaves the majority of certificates unexamined: we find that, on average, 65% of SSL certificates advertised in each IPv4 scan that we examine are actually invalid. In this paper, we demonstrate that despite their invalidity, much can be understood from these certificates. Specifically, we show why the web's SSL ecosystem is populated by so many invalid certificates, where they originate from, and how they impact security. Using a dataset of over 80M certificates, we determine that most invalid certificates originate from a few types of end-user devices, and possess dramatically different properties than their valid counterparts. We find that many of these devices periodically reissue their (invalid) certificates, and develop new techniques that allow us to track these reissues across scans. We present evidence that this technique allows us to uniquely track over 6.7M devices. Taken together, our results open up a heretofore largely-ignored portion of the SSL ecosystem to further study.
The semantics of online authentication in the web are rather straightforward: if Alice has a certificate binding Bob's name to a public key, and if a remote entity can prove knowledge of Bob's private key, then (barring key compromise) that remote entity must be Bob. However, in reality, many websites' and the majority of the most popular ones-are hosted at least in part by third parties such as Content Delivery Networks (CDNs) or web hosting providers. Put simply: administrators of websites who deal with (extremely) sensitive user data are giving their private keys to third parties. Importantly, this sharing of keys is undetectable by most users, and widely unknown even among researchers. In this paper, we perform a large-scale measurement study of key sharing in today's web. We analyze the prevalence with which websites trust third-party hosting providers with their secret keys, as well as the impact that this trust has on responsible key management practices, such as revocation. Our results reveal that key sharing is extremely common, with a small handful of hosting providers having keys from the majority of the most popular websites. We also find that hosting providers often manage their customers' keys, and that they tend to react more slowly yet more thoroughly to compromised or potentially compromised keys.