Visible to the public Biblio

Filters: Author is Demertzis, Ioannis  [Clear All Filters]
2018-02-14
Demertzis, Ioannis, Papamanthou, Charalampos.  2017.  Fast Searchable Encryption With Tunable Locality. Proceedings of the 2017 ACM International Conference on Management of Data. :1053–1067.
Searchable encryption (SE) allows a client to outsource a dataset to an untrusted server while enabling the server to answer keyword queries in a private manner. SE can be used as a building block to support more expressive private queries such as range/point and boolean queries, while providing formal security guarantees. To scale SE to big data using external memory, new schemes with small locality have been proposed, where locality is defined as the number of non-continuous reads that the server makes for each query. Previous space-efficient SE schemes achieve optimal locality by increasing the read efficiency-the number of additional memory locations (false positives) that the server reads per result item. This can hurt practical performance. In this work, we design, formally prove secure, and evaluate the first SE scheme with tunable locality and linear space. Our first scheme has optimal locality and outperforms existing approaches (that have a slightly different leakage profile) by up to 2.5 orders of magnitude in terms of read efficiency, for all practical database sizes. Another version of our construction with the same leakage as previous works can be tuned to have bounded locality, optimal read efficiency and up to 60x more efficient end-to-end search time. We demonstrate that our schemes work fast in in-memory as well, leading to search time savings of up to 1 order of magnitude when compared to the most practical in-memory SE schemes. Finally, our construction can be tuned to achieve trade-offs between space, read efficiency, locality, parallelism and communication overhead.
2017-08-22
Demertzis, Ioannis, Papadopoulos, Stavros, Papapetrou, Odysseas, Deligiannakis, Antonios, Garofalakis, Minos.  2016.  Practical Private Range Search Revisited. Proceedings of the 2016 International Conference on Management of Data. :185–198.

We consider a data owner that outsources its dataset to an untrusted server. The owner wishes to enable the server to answer range queries on a single attribute, without compromising the privacy of the data and the queries. There are several schemes on "practical" private range search (mainly in Databases venues) that attempt to strike a trade-off between efficiency and security. Nevertheless, these methods either lack provable security guarantees, or permit unacceptable privacy leakages. In this paper, we take an interdisciplinary approach, which combines the rigor of Security formulations and proofs with efficient Data Management techniques. We construct a wide set of novel schemes with realistic security/performance trade-offs, adopting the notion of Searchable Symmetric Encryption (SSE) primarily proposed for keyword search. We reduce range search to multi-keyword search using range covering techniques with tree-like indexes. We demonstrate that, given any secure SSE scheme, the challenge boils down to (i) formulating leakages that arise from the index structure, and (ii) minimizing false positives incurred by some schemes under heavy data skew. We analytically detail the superiority of our proposals over prior work and experimentally confirm their practicality.