Visible to the public Biblio

Filters: Author is Jansen, Rob  [Clear All Filters]
2019-10-30
Jansen, Rob, Traudt, Matthew, Hopper, Nicholas.  2018.  Privacy-Preserving Dynamic Learning of Tor Network Traffic. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1944-1961.

Experimentation tools facilitate exploration of Tor performance and security research problems and allow researchers to safely and privately conduct Tor experiments without risking harm to real Tor users. However, researchers using these tools configure them to generate network traffic based on simplifying assumptions and outdated measurements and without understanding the efficacy of their configuration choices. In this work, we design a novel technique for dynamically learning Tor network traffic models using hidden Markov modeling and privacy-preserving measurement techniques. We conduct a safe but detailed measurement study of Tor using 17 relays (\textasciitilde2% of Tor bandwidth) over the course of 6 months, measuring general statistics and models that can be used to generate a sequence of streams and packets. We show how our measurement results and traffic models can be used to generate traffic flows in private Tor networks and how our models are more realistic than standard and alternative network traffic generation\textasciitildemethods.

2017-08-22
Jansen, Rob, Johnson, Aaron.  2016.  Safely Measuring Tor. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1553–1567.

Tor is a popular network for anonymous communication. The usage and operation of Tor is not well-understood, however, because its privacy goals make common measurement approaches ineffective or risky. We present PrivCount, a system for measuring the Tor network designed with user privacy as a primary goal. PrivCount securely aggregates measurements across Tor relays and over time to produce differentially private outputs. PrivCount improves on prior approaches by enabling flexible exploration of many diverse kinds of Tor measurements while maintaining accuracy and privacy for each. We use PrivCount to perform a measurement study of Tor of sufficient breadth and depth to inform accurate models of Tor users and traffic. Our results indicate that Tor has 710,000 users connected but only 550,000 active at a given time, that Web traffic now constitutes 91% of data bytes on Tor, and that the strictness of relays' connection policies significantly affects the type of application data they forward.