Biblio
Named Data Network (NDN) is an alternative to host-centric networking exemplified by today's Internet. One key feature of NDN is in-network caching that reduces access delay and query overhead by caching popular contents at the source as well as at a few other nodes. Unfortunately, in-network caching suffers various privacy risks by different attacks, one of which is termed timing attack. This is an attack to infer whether a consumer has recently requested certain contents based on the time difference between the delivery time of those contents that are currently cached and those that are not cached. In order to prevent the privacy leakage and resist such kind of attacks, we propose a detection scheme by adopting Long Short-term Memory (LSTM) model. Based on the four input features of LSTM, cache hit ratio, average request interval, request frequency, and types of requested contents, we timely capture more important eigenvalues by dividing a constant time window size into a few small slices in order to detect timing attacks accurately. We have performed extensive simulations to compare our scheme with several other state-of-the-art schemes in classification accuracy, detection ratio, false alarm ratio, and F-measure. It has been shown that our scheme possesses a better performance in all cases studied.
The huge popularity of online social networks and the potential financial gain have led to the creation and proliferation of zombie accounts, i.e., fake user accounts. For considerable amount of payment, zombie accounts can be directed by their managers to provide pre-arranged biased reactions to different social events or the quality of a commercial product. It is thus critical to detect and screen these accounts. Prior arts are either inaccurate or relying heavily on complex posting/tweeting behaviors in the classification process of normal/zombie accounts. In this work, we propose to use a bi-level penalized logistic classifier, an efficient high-dimensional data analysis technique, to detect zombie accounts based on their publicly available profile information and the statistics of their followers' registration locations. Our approach, termed (B)i-level (P)enalized (LO)gistic (C)lassifier (BPLOC), is data adaptive and can be extended to mount more accurate detections. Our experimental results are based on a small number of SINA WeiBo accounts and have demonstrated that BPLOC can classify zombie accounts accurately.