Biblio
For the past decade, security experts have warned that malicious engineers could modify hardware designs to include hardware backdoors (trojans), which, in turn, could grant attackers full control over a system. Proposed defenses to detect these attacks have been outpaced by the development of increasingly small, but equally dangerous, trojans. To thwart trojan-based attacks, we propose a novel architecture that maps the security-critical portions of a processor design to a one-time programmable, LUT-free fabric. The programmable fabric is automatically generated by analyzing the HDL of targeted modules. We present our tools to generate the fabric and map functionally equivalent designs onto the fabric. By having a trusted party randomly select a mapping and configure each chip, we prevent an attacker from knowing the physical location of targeted signals at manufacturing time. In addition, we provide decoy options (canaries) for the mapping of security-critical signals, such that hardware trojans hitting a decoy are thwarted and exposed. Using this defense approach, any trojan capable of analyzing the entire configurable fabric must employ complex logic functions with a large silicon footprint, thus exposing it to detection by inspection. We evaluated our solution on a RISC-V BOOM processor and demonstrated that, by providing the ability to map each critical signal to 6 distinct locations on the chip, we can reduce the chance of attack success by an undetectable trojan by 99%, incurring only a 27% area overhead.
Ensuring the integrity and security of the memory system is critical. Recent studies have shown serious security concerns due to "rowhammer" attacks, where repeated accesses to a row of memory cause bit flips in adjacent rows. Recent work by Google's Project Zero has shown how to leverage rowhammer-induced bit-flips as the basis for security exploits that include malicious code injection and memory privilege escalation. Being an important security concern, industry has attempted to defend against rowhammer attacks. Deployed defenses employ two strategies: (1) doubling the system DRAM refresh rate and (2) restricting access to the CLFLUSH instruction that attackers use to bypass the cache to increase memory access frequency (i.e., the rate of rowhammering). We demonstrate that such defenses are inadequte: we implement rowhammer attacks that both avoid using the CLFLUSH instruction and cause bit flips with a doubled refresh rate. Our next-generation CLFLUSH-free rowhammer attack bypasses the cache by manipulating cache replacement state to allow frequent misses out of the last-level cache to DRAM rows of our choosing. To protect existing systems from more advanced rowhammer attacks, we develop a software-based defense, ANVIL, which thwarts all known rowhammer attacks on existing systems. ANVIL detects rowhammer attacks by tracking the locality of DRAM accesses using existing hardware performance counters. Our detector identifies the rows being frequently accessed (i.e., the aggressors), then selectively refreshes the nearby victim rows to prevent hammering. Experiments running on real hardware with the SPEC2006 benchmarks show that ANVIL has less than a 1% false positive rate and an average slowdown of 1%. ANVIL is low-cost and robust, and our experiments indicate that it is an effective approach for protecting existing and future systems from even advanced rowhammer attacks.