Visible to the public Biblio

Filters: Author is Agrawal, Rajeev  [Clear All Filters]
2020-02-17
Ezick, James, Henretty, Tom, Baskaran, Muthu, Lethin, Richard, Feo, John, Tuan, Tai-Ching, Coley, Christopher, Leonard, Leslie, Agrawal, Rajeev, Parsons, Ben et al..  2019.  Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.

2017-09-05
Freet, David, Agrawal, Rajeev.  2016.  An Overview of Architectural and Security Considerations for Named Data Networking (NDN). Proceedings of the 8th International Conference on Management of Digital EcoSystems. :52–57.

The Internet of Things (IoT) is an emerging architecture that seeks to interconnect all of the "things" we use on a daily basis. Whereas the Internet originated as a way to connect traditional computing devices in order to share information, IoT includes everything from automobiles to appliances to buildings. As networks and devices become more diverse and disparate in their communication methods and interfaces, traditional host-to host technologies such as Internet Protocol (IP) are challenged to provide the level of data exchange and security needed to operate in this new network paradigm. Named Data Networking (NDN) is a developing Internet architecture that can help implement the IoT paradigm in a more efficient and secure manner. This paper introduces the NDN architecture in comparison to the traditional IP-based architecture and discusses several security concepts pertaining to NDN that make this a powerful technology for implementing the Internet of Things.