Visible to the public Biblio

Filters: Author is Wahby, Riad S.  [Clear All Filters]
2018-12-10
Wahby, Riad S., Ji, Ye, Blumberg, Andrew J., shelat, abhi, Thaler, Justin, Walfish, Michael, Wies, Thomas.  2017.  Full Accounting for Verifiable Outsourcing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2071–2086.
Systems for verifiable outsourcing incur costs for a prover, a verifier, and precomputation; outsourcing makes sense when the combination of these costs is cheaper than not outsourcing. Yet, when prior works impose quantitative thresholds to analyze whether outsourcing is justified, they generally ignore prover costs. Verifiable ASICs (VA)—in which the prover is a custom chip—is the other way around: its cost calculations ignore precomputation. This paper describes a new VA system, called Giraffe; charges Giraffe for all three costs; and identifies regimes where outsourcing is worthwhile. Giraffe's base is an interactive proof geared to data-parallel computation. Giraffe makes this protocol asymptotically optimal for the prover and improves the verifier's main bottleneck by almost 3x, both of which are of independent interest. Giraffe also develops a design template that produces hardware designs automatically for a wide range of parameters, introduces hardware primitives molded to the protocol's data flows, and incorporates program analyses that expand applicability. Giraffe wins even when outsourcing several tens of sub-computations, scales to 500x larger computations than prior work, and can profitably outsource parts of programs that are not worthwhile to outsource in full.
2018-03-26
Wilson, Judson, Wahby, Riad S., Corrigan-Gibbs, Henry, Boneh, Dan, Levis, Philip, Winstein, Keith.  2017.  Trust but Verify: Auditing the Secure Internet of Things. Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. :464–474.

Internet-of-Things devices often collect and transmit sensitive information like camera footage, health monitoring data, or whether someone is home. These devices protect data in transit with end-to-end encryption, typically using TLS connections between devices and associated cloud services. But these TLS connections also prevent device owners from observing what their own devices are saying about them. Unlike in traditional Internet applications, where the end user controls one end of a connection (e.g., their web browser) and can observe its communication, Internet-of-Things vendors typically control the software in both the device and the cloud. As a result, owners have no way to audit the behavior of their own devices, leaving them little choice but to hope that these devices are transmitting only what they should. This paper presents TLS–Rotate and Release (TLS-RaR), a system that allows device owners (e.g., consumers, security researchers, and consumer watchdogs) to authorize devices, called auditors, to decrypt and verify recent TLS traffic without compromising future traffic. Unlike prior work, TLS-RaR requires no changes to TLS's wire format or cipher suites, and it allows the device's owner to conduct a surprise inspection of recent traffic, without prior notice to the device that its communications will be audited.

2017-09-05
Lampert, Ben, Wahby, Riad S., Leonard, Shane, Levis, Philip.  2016.  Robust, Low-cost, Auditable Random Number Generation for Embedded System Security. Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM. :16–27.

This paper presents an architecture for a discrete, high-entropy hardware random number generator. Because it is constructed out of simple hardware components, its operation is transparent and auditable. Using avalanche noise, a non-deterministic physical phenomenon, the circuit is inherently probabilistic and resists adversarial control. Furthermore, because it compares the outputs from two matched noise sources, it rejects environmental disturbances like RF energy and power supply ripple. The resulting hardware produces more than 0.98 bits of entropy per sample, is inexpensive, has a small footprint, and can be disabled to conserve power when not in use.