Biblio
Securely pairing wearables with another device is the key to many promising applications, such as mobile payment, sensitive data transfer and secure interactions with smart home devices. This paper presents Touch-And-Guard (TAG), a system that uses hand touch as an intuitive manner to establish a secure connection between a wristband wearable and the touched device. It generates secret bits from hand resonant properties, which are obtained using accelerometers and vibration motors. The extracted secret bits are used by both sides to authenticate each other and then communicate confidentially. The ubiquity of accelerometers and motors presents an immediate market for our system. We demonstrate the feasibility of our system using an experimental prototype and conduct experiments involving 12 participants with 1440 trials. The results indicate that we can generate secret bits at a rate of 7.84 bit/s, which is 58% faster than conventional text input PIN authentication. We also show that our system is resistant to acoustic eavesdroppers in proximity.